
Can clicks be both labels and features? Unbiased Behavior
Feature Collection and Uncertainty-aware Learning to Rank

Tao Yang
University of Utah

Salt Lake City, Utah, USA
taoyang@cs.utah.edu

Chen Luo
Amazon Search

Palo Alto, CA, USA
cheluo@amazon.com

Hanqing Lu
Amazon Search

Palo Alto, CA, USA
luhanqin@amazon.com

Parth Gupta
Amazon Search

Palo Alto, CA, USA
guptpart@amazon.com

Bing Yin
Amazon Search

Palo Alto, CA, USA
alexbyin@amazon.com

Qingyao Ai
University of Utah

Salt Lake City, Utah, USA
aiqy@cs.utah.edu

ABSTRACT
Using implicit feedback collected from user clicks as training labels
for learning-to-rank algorithms is a well-developed paradigm that
has been extensively studied and used in modern IR systems. Using
user clicks as ranking features, on the other hand, has not been fully
explored in existing literature. Despite its potential in improving
short-term system performance, whether the incorporation of user
clicks as ranking features is beneficial for learning-to-rank systems
in the long term is still questionable. Two of the most important
problems are (1) the explicit bias introduced by noisy user behavior,
and (2) the implicit bias, which we refer to as the exploitation bias,
introduced by the dynamic training and serving of learning-to-
rank systems with behavior features. In this paper, we explore the
possibility of incorporating user clicks as both training labels and
ranking features for learning to rank. We formally investigate the
problems in feature collection and model training, and propose a
counterfactual feature projection function and a novel uncertainty-
aware learning to rank framework. Experiments on public datasets
show that rankingmodels learnedwith the proposed framework can
significantly outperform models built with raw click features and
algorithms that rank items without considering model uncertainty.

CCS CONCEPTS
• Information systems→ Learning to rank.

KEYWORDS
Learning to rank, Behavior feature, Exploitation bias

1 INTRODUCTION
Ranking is a core component of many Information Retrieval (IR)
applications. Among different types of ranking techniques, learning
to rank (LTR) [36], which ranks items by building ranking functions

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR’22, July 11-15, 2022, Madrid, Spain
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

withmachine learning (ML) models, is one of the most popular rank-
ing frameworks in modern IR systems. With recent advances on
ML models such as gradient boosting machines [27] and deep learn-
ing techniques [30], LTR algorithms have dramatically improved
the retrieval performance of search engines and recommendation
systems. However, this also increases the need for labeled data. As
collecting large-scale explicit relevance annotations is expensive
and prohibitive in many applications, implicit feedback extracted
from user behavior data has been widely used for training LTRmod-
els [33]. For example, previous studies [5, 34, 59] have shown that
effective LTR models can be learned directly from training labels
constructed with user clicks and unbiased learning techniques.

As user clicks have been well recognized as good alternatives
for explicit relevance labels in practice [61], a natural question is:
can we use user clicks as ranking features for LTR models as well?
In fact, many industrial IR systems have already considered user
clicks as important input signals for their LTR models [14]. For ex-
ample, Agichtein et al. [3] have shown that, by incorporating user
clicks as behavior features to ranking systems, they can improve
the performance of competitive web search ranking algorithms by
as much as 31% relative to the original performance. Because user
behaviors are direct indicators of result utility from the user’s per-
spective [59], theoretically speaking, no other features can reflect
result relevance better than the behavior signals collected from the
user themselves.

Nonetheless, whether the incorporation of user behavior fea-
tures would benefit or hurt the overall quality of LTR systems is
still controversial. While the superior performance of LTR mod-
els with behavior features has been broadly observed in ranking
experiments with short-term evaluation metrics (e.g., nDCG and
click-through rates), it is also recognized that directly using user
clicks as ranking features could bring destructive damage to re-
trieval quality in the long term. To the best of our knowledge, there
are two reasons why incorporating user behavior features could be
problematic in practice.

First, user clicks are noisy. User studies have found that web
search users tend to examine and click results on top of search
engine result pages (SERPs) despite the actual utility of those results
(i.e., the position bias [33] and trust bias [60]). Without proper
treatment, incorporating clicks as features will enhance the effect
of click bias on LTR models and eventually drive them to rank items
according to their previous rankings but not their actual relevance.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

SIGIR’22, July 11-15, 2022, Madrid, Spain Tao Yang, Chen Luo, Hanqing Lu, Parth Gupta, Bing Yin, and Qingyao Ai

The second reason, which is more important, is that the incorpo-
ration of clicks as features would create a new type of bias into the
input data directly. For example, because behavior features usually
have high correlations with the training labels in LTR (especially
when we use user clicks as the training labels), such features could
easily overwhelm other features in training and dominate model
outputs. In practice, behavior features can be collected only for old
items that have been shown to users previously, and we cannot
extract the same feature accurately for new items since we haven’t
explore and show them to users yet. Without proper treatments, the
training of LTR models with behavior features could easily overex-
ploit known information and produce ranking models that always
prefer old items over new ones. This makes new items more difficult
to be explored and creates a vicious spiral that forever prevents
them from being shown to users. While certain bias in LTR labels
(e.g., selection bias [39, 59]) could be alleviated with post-processing
or non-behavior features (as shown in Section 6.2.3), the above bias
in ranking features, which we refer to as the exploitation bias, is
a more fundamental problem that is coupled with the dynamic
training and serving of LTR systems.

In this paper, we address the problems above with new feature
collection and ranking exploration algorithms for LTR. Specifically,
inspired by unbiased learning to rank [2, 55], we first propose to re-
solve the noise in click features with counterfactual affine functions
and discuss multiple paradigms to incorporate unbiased behavior
features in LTR systems. After that, we propose to address the
exploitation bias in LTR with a novel uncertainty-aware learning
to rank algorithm. Collecting click features for previously unseen
items requires exploration in ranking, but myopically exploring
new items is also undesirable because (1) it could significantly hurt
user experience, and (2) there is no trivial method to decide whether
an item is well-explored or still under-explored. Based on these
observations, we propose to conduct ranking exploration based on
the uncertainty of LTR models on each candidate item. The intu-
ition is that we should explore an item and let users interact with it
when our model is uncertain about the item’s utility, and gradually
reduce its chance of exploration when we gain more confidence in
our prediction. To demonstrate the effectiveness of the proposed
algorithms, we conducted experiments on public LTR datasets with
synthetic clicks. We simulated the process of click feature collection
and new item discovery to evaluate the long-term ranking perfor-
mance of each method. Experiments show that our unbiased feature
affine functions and uncertainty-aware learning-to-rank algorithm
can significantly outperform both baselines that use raw clicks as
features and models that conduct exploration without considering
uncertainty in ranking.

2 RELATEDWORK
In general, there are three lines of research that directly relate to this
paper, that are behavior features in LTR, unbiased/online learning
to rank, and uncertainty in ranking.

Behavior features in LTR. User behavior signals have been
treated as important indicators for result relevance in IR [10]. With
the emergence of the internet and large-scaleWeb search engines in
1990s, using user behaviors and feedback to improve retrieval per-
formance has gradually become a popular paradigm for modern IR

systems. For example, Agichtein et al. [3] incorporated user clicks
as features and significantly improved the ranking performance of a
commercial IR system. Ferro et al. [25, 26] and Macdonald et al. [37]
showed that user behavior features can significantly improve upon
an effective learned model without behavior features. Usta et al.
[54] also showed that ranking models trained with features based
on user behavior can outperform various baselines based on ad-
hoc retrieval functions on education search engines. Nonetheless,
despite the popularity of behavior features, few studies have for-
mally discussed the effect of user clicks as behavior features in LTR.
As shown in this paper, incorporating behavior features without
proper treatments could hurt the effectiveness of LTR systems by
amplifying the problem of overexploitation and overfitting. Some
strategies were proposed to alleviate the problem by predicting
behavior features with non-behavior features [31]. Unfortunately,
these methods cannot address the problem because the predictions
usually suffer from significant errors, and the models they create
are theoretically the same to the LTR models without behavior
features, which were shown to be suboptimal [3, 25, 26].

Unbiased and Online LTR. In contrast to the discussion of
how to use clicks as ranking features, the analysis of how to use
user clicks as training labels for LTR, on the other hand, has been
extensively studied in the last decade [6, 7, 53]. The major focus
of these studies is how to effectively learn unbiased LTR models
by training them with biased click signals [32, 33]. Specifically, the
studies of how to actively remove biases in labels through online
interpolations (i.e., online LTR) and how to address click bias from
theoretical perspectives (i.e., unbiased LTR) have received consid-
erable attention. For example, previous studies have developed
different strategies to explore result relevance with bandit learn-
ing [48, 49, 56–58, 63] or stochastic ranking sampling [38] in online
LTR systems. To train LTR models with offline click logs, causal
analysis techniques such as counterfactual learning [1, 4, 34, 40, 62]
have also been widely adopted in extracting unbiased training ob-
jectives for LTR. In contrast to existing studies that only treat user
clicks as training labels in unbiased/online LTR, in this paper, we
explore and analyze the effect of using click data as both features
and labels for LTR.

Uncertainty in Ranking. Model uncertainty has been widely
studied in the community of ML and statistics [16, 23, 28]. In IR,
one of the first studies that use model uncertainty for ranking is
proposed by Zhu et al. [64], in which they use the variance of a
probabilistic language model as a risk-based factor to improve the
performance of retrieval models. Instead of optimizing ranking
performance directly, there are also studies that use model uncer-
tainty to improve query performance prediction [46, 50] and query
cutoff prediction [19, 35]. Recently, as neural retrieval models have
become popular in modern IR systems, uncertainty estimation tech-
niques for deep learning models have been introduced into the
studies of neural IR [17, 42]. It has been shown that model un-
certainty in neural networksc can help us better understand and
analyze the behaviors of neural rankers, such as BERT-based mod-
els [21]. In contrast to previous studies, in this paper, we propose
to use model uncertainty for ranking exploration in LTR. Instead
of optimizing short-term ranking metrics directly, our proposed
uncertainty-aware LTR algorithm can collect high quality behavior
features and build effective ranking models at the same time.

Can clicks be both labels and features? Unbiased Behavior Feature Collection and Uncertainty-aware Learning to Rank SIGIR’22, July 11-15, 2022, Madrid, Spain

3 PROBLEM FORMULATION
In this section, we formally describe the problem of learning to
rank with implicit user feedback as well as the hypothesis we used
to build and analyze the proposed methods in theory. Specifically,
let 𝑞 be a query, 𝑑 be a candidate document/item to be ranked,
and 𝑥 be the feature vector of (𝑞, 𝑑). Given a specific dataset 𝑄 ,
the goal of learning to rank is to construct a ranking function 𝑓
(parameterized by 𝜃) that minimizes a ranking loss L(𝑄) defined
over the predicted relevance of each document, i.e., 𝑓 (𝑥 |𝑑, 𝑞, 𝜃), and
the actual relevance of each document, i.e., 𝑃 (𝑅 = 1|𝑞, 𝑑), as

L(𝑄) = 1
|𝑄 |

∑︁
𝑞∈𝑄

∑︁
𝑑∈𝜋𝑞

𝑙 (𝑓 (𝑥 |𝑑, 𝑞, 𝜃), 𝑃 (𝑅 = 1|𝑞, 𝑑)) (1)

where 𝜋𝑞 is the ranked list of documents created by 𝑓 (𝑥 |𝑑, 𝑞, 𝜃).
Depending on how we evaluate the quality of ranked lists, the local
loss function 𝑙 can be defined with different weighting schemes
according to the relevance and position of the document in 𝜋𝑞 .

Ideally, 𝑃 (𝑅 = 1|𝑞, 𝑑) should be inferred from explicit user feed-
back such as relevance annotations, but this is often infeasible due
to the prohibitive costs of collecting large-scale explicit feedback.
Therefore, a popular way to address the problem is to replace ex-
plicit feedback with implicit feedback such as user clicks to build
and train learning-to-rank models. However, user clicks often suf-
fer from several types of noise and biases in practice, the most
well-known two of which are the position bias [18] and the trust
bias [33]. The position bias refers to the tendency of users towards
examining documents at higher positions. And the trust bias de-
scribes the tendency of users towards trusting the quality of ranking
systems and clicking the results without checking about their ac-
tual relevance. Formally, let 𝐶 and 𝐸 be the Bernoulli variables
representing whether a user has clicked or examined a document,
respectively. Following a common examination hypothesis used in
previous studies [2, 55], the probability of a document being clicked
can be formulated as

𝑃 (𝐶 =1|𝑑, 𝑞, 𝑘)=𝑃 (𝐸=1|𝑘)
(
𝑃 (𝐶 =1|𝑅=1, 𝐸=1)𝑃 (𝑅=1|𝑑, 𝑞)

+ 𝑃 (𝐶 =1|𝑅=0, 𝐸=1)𝑃 (𝑅=0|𝑑, 𝑞)
) (2)

where 𝑘 is the position of 𝑑 in 𝑞 when presented to users. For-
tunately, many methods have already been proposed to estimate
position bias and trust bias in practice [2, 5, 34, 55, 59]. Thus, for
the simplicity of theoretical analysis, we assume that 𝑃 (𝐸 = 1|𝑘),
𝑃 (𝐶 =1|𝑅=1, 𝐸=1), and 𝑃 (𝐶 =1|𝑅=0, 𝐸=1) are known in advance.

Similar to previous studies [7, 33], the goal of this paper is to con-
struct LTR models directly from user clicks to improve relevance
ranking. However, to the best of our knowledge, most existing stud-
ies on unbiased and online learning to rank with implicit feedback
only use user clicks as supervision signals (i.e., labels) [34, 38–
40, 59]. They simply assume that the feature vectors of documents
(i.e., 𝑥) are static and extracted independently of the labels. In con-
trast, we believe that a natural paradigm in practice is to incorporate
click signals as a part of the ranking features for LTR directly. We
refer to the static and click-independent features as non-behavior
features (i.e., 𝑥𝑛𝑏) and the features constructed from user clicks
as behavior features (i.e., 𝑥𝑏). Our goal is to construct better LTR
models by simultaneously using click data as labels and features.

4 REPRESENTING CLICKS AS FEATURES
We now describe how to collect and use user clicks as behavior
features for LTR. In contrast to non-behavior features such as term
matching scores [45], behavior features are dynamically collected
in online services and subject to significant user noise. Therefore,
how to design and use click-based features is an important problem
in modern IR systems. In this work, we collect click features dynam-
ically during the training and serving of LTR systems. Inspired by
the studies of unbiased learning to rank, we propose a theoretically
principled method to debias click features and discuss different
paradigms to incorporate them into LTR frameworks.

4.1 Click Collection and System Update
Previous studies [3, 44] often assume that behavior features are
collected beforehand and independent of the construction of LTR
models. This assumption is problematic because, in real-world ap-
plications, LTR systems can directly control the distribution of
results presented to users and significantly affect when and where
we can collect click data. Therefore, in this paper, we formulate
the problem with a more realistic setting by assuming that click
features are dynamically collected together with the training and
serving of LTR systems.

Suppose that our system receives and processes one query ses-
sion at each time step. At each time step 𝑡 , the user issues query 𝑞𝑡 ,
and then the ranking system selects documents from candidate set
𝐷𝑞𝑡 , displays ranking 𝜋𝑡 , and collects clicks 𝑐𝑡 on 𝜋𝑡 . Since updating
features and ranking models at each time step is often prohibitive
in practice [7], a common paradigm to develop LTR systems is to
first serve an initial LTR model to users, collect user interactions for
a time period, and then use the collected clicks to update the online
system. Assuming that the LTR system will be updated at time step
𝑇 , we need to extract behavior features and update models with a
set of click data collected over 𝑇 time steps as

D = {(𝑞𝑡 , 𝐷𝑞𝑡 , 𝜋𝑡 , 𝑐𝑡)}𝑇𝑡=1 (3)

Note that even for the same query/user, the candidate set 𝐷𝑞𝑡 and
𝜋𝑡 could change from time to time when new documents are intro-
duced to the database. By formulating the problem in this way, we
aim to better analyze and model data dynamics in practical ranking
scenarios.

4.2 Unbiased Behavior Feature Extraction
One of the most straightforward methods to extract click-based be-
havior features is to compute the probability of clicking a document
with its cumulated clicks and impressions, e.g., clickthrough rate
(CTR). However, the naive CTR of a document doesn’t directly re-
flect document relevance due to the biases in click data. For example,
we can derive the CTR of a (𝑞, 𝑑) pair from Eq. (2) as

𝑃 (𝐶 = 1|𝑑, 𝑞, 𝑘) = 𝛼𝑘𝑃 (𝑅 = 1|𝑑, 𝑞, 𝑘) + 𝛽𝑘 (4)

where we have
𝛼𝑘 =𝑃 (𝐸=1|𝑘) ∗ (𝑃 (𝐶 =1|𝑅=1, 𝐸=1) − 𝑃 (𝐶 =1|𝑅=0, 𝐸=1))
𝛽𝑘 =𝑃 (𝐸=1|𝑘) ∗ (𝑃 (𝐶 =1|𝑅=0, 𝐸=1)) (5)

Because 𝛼𝑘 and 𝛽𝑘 could vary significant based on the document
position 𝑘 , 𝑃 (𝐶 = 1|𝑑, 𝑞, 𝑘) cannot be used as a direct replacement

SIGIR’22, July 11-15, 2022, Madrid, Spain Tao Yang, Chen Luo, Hanqing Lu, Parth Gupta, Bing Yin, and Qingyao Ai

of 𝑃 (𝑅 = 1|𝑑, 𝑞, 𝑘). This means that the naive CTR of documents is
a biased estimation of document relevance.

Inspired by recent advances in unbiased learning to rank [2, 34,
55], we propose to adopt an affine function over clicks to extract
unbiased click features. Specifically, given D, the probability of a
document being clicked in spite of its position can be computed as

𝑃 (𝐶 =1|𝑑, 𝑞)= 1
𝑇𝑑

𝑇∑︁
𝑡=1

𝑞𝑡=𝑞,𝑑 ∈𝜋𝑡

(
𝛼𝑅𝑛𝑘 (𝑑,𝜋𝑡)𝑃 (𝑅=1|𝑑, 𝑞)+𝛽𝑅𝑛𝑘 (𝑑,𝜋𝑡)

)
=

1
𝑇𝑑

(
𝐶𝑢𝑚𝑇 [𝛼𝑑,𝑞]𝑃 (𝑅=1|𝑑, 𝑞) +𝐶𝑢𝑚𝑇 [𝛽𝑑,𝑞]

) (6)

where 𝑅𝑛𝑘 (𝑑, 𝜋𝑡) is the position of 𝑑 in the ranked list 𝜋𝑡 , and

𝑇𝑑 =

𝑇∑︁
𝑡=1

𝑞𝑡=𝑞,𝑑 ∈𝜋𝑡

1, 𝐶𝑢𝑚𝑇 [𝛼𝑑,𝑞]=
𝑇∑︁
𝑡=1

𝑞𝑡=𝑞,𝑑 ∈𝜋𝑡

𝛼𝑅𝑛𝑘 (𝑑,𝜋𝑡)

𝐶𝑢𝑚𝑇 [𝛽𝑑,𝑞] =
𝑇∑︁
𝑡=1

𝑞𝑡=𝑞,𝑑∈𝜋𝑡

𝛽𝑅𝑛𝑘 (𝑑,𝜋𝑡)

(7)

As discussed in previous studies [2, 59], 𝛼 and 𝛽 can be estimated
through online experiments in advance. Thus, following the idea
of affine estimators proposed by Vardasbi et al. [55], we can extract
behavior feature 𝑥𝑏 at time𝑇 with an affine click probability of 𝑑 as

Δ𝑇 (𝑑 |𝑞)=
𝐶𝑢𝑚𝑇 [𝐶𝑑,𝑞]−𝐶𝑢𝑚𝑇 [𝛽𝑑,𝑞]

𝐶𝑢𝑚𝑇 [𝛼𝑑,𝑞]
,𝐶𝑢𝑚𝑇 [𝐶𝑑,𝑞] =

𝑇∑︁
𝜏=1

𝑞𝑡=𝑞,𝑑∈𝜋𝜏

𝑐𝜏 (𝑑) (8)

where 𝑇 is the most recent feature updating time step. In practice,
updating ranking systems in real time is often prohibitive. There-
fore, we assume that features and models are updated periodically
and the behavior feature 𝑥𝑏 computed at 𝑇 is fixed and used in
future time steps till the next periodic system update.

The affine click probability Δ𝑇 (𝑑 |𝑞) is an unbiased estimation of
𝑃 (𝑅=1|𝑑, 𝑞) given D as

E𝑐 [Δ𝑇 (𝑑 |𝑞)]=
E𝑐

[
𝐶𝑢𝑚[𝐶𝑑,𝑞]

]
−𝐶𝑢𝑚[𝛽𝑑,𝑞]

𝐶𝑢𝑚[𝛼𝑑,𝑞]

=

E𝑐
[∑𝑇

𝑡=1
𝑞𝑡=𝑞,𝑑 ∈𝜋∗

𝑡

𝐶𝑅𝑛𝑘 (𝑑,𝜋𝑡)
]
−𝐶𝑢𝑚[𝛽𝑑,𝑞]

𝐶𝑢𝑚[𝛼𝑑,𝑞]

=

∑𝑇
𝑡=1

𝑞𝑡=𝑞,𝑑 ∈𝜋∗
𝑡

𝑃 (𝐶 =1|𝑑, 𝑞, 𝜋𝑡) −𝐶𝑢𝑚[𝛽𝑑,𝑞]

𝐶𝑢𝑚[𝛼𝑑,𝑞]

=

∑𝑇
𝑡=1

𝑞𝑡=𝑞,𝑑 ∈𝜋∗
𝑡

(
𝛼𝑅𝑛𝑘 (𝑑,𝜋𝑡)𝑃 (𝑅=1|𝑑, 𝑞)+𝛽𝑅𝑛𝑘 (𝑑,𝜋𝑡)

)
−𝐶𝑢𝑚[𝛽𝑑,𝑞]

𝐶𝑢𝑚[𝛼𝑑,𝑞]

=
𝐶𝑢𝑚[𝛼𝑑,𝑞]𝑃 (𝑅=1|𝑑, 𝑞) +𝐶𝑢𝑚[𝛽𝑑,𝑞] −𝐶𝑢𝑚[𝛽𝑑,𝑞]

𝐶𝑢𝑚[𝛼𝑑,𝑞]
=𝑃 (𝑅=1|𝑑, 𝑞)

(9)

Note that the above equation is satisfied when 𝐶𝑢𝑚𝑇 [𝛼𝑑,𝑞] > 0,
which means that 𝑑 has been shown to users in D. However, it
is unrealistic to expect every document to have 𝐶𝑢𝑚𝑇 [𝛼𝑑,𝑞] > 0

when we can only show a limited number of documents in each
session. Thus, we set a default value for Δ𝑇 (𝑑 |𝑞) (e.g., -2)1 when
𝐶𝑢𝑚𝑇 [𝛼𝑑,𝑞] = 0.

In contrast to the relevance estimator constructed based on how
documents and clicks were collected in the previous ranking system
(i.e., the logging policy) [40], our affine estimator is logging-policy-
oblivious since it requires no prior knowledge on the logging policy.
This is particularly important because, in many cases, we don’t have
a stationary logging policy in online systems. For example, when
new documents are constantly introduced into the candidate sets,
the probability of giving the same ranked list could be different at
different time steps. As shown in Section 6, our models with affine
click features can significantly outperform models with naive CTR
despite the updates of ranking models and the introduction of new
documents in online inferences.

4.3 Behavior Feature Incorporation
The final step of feature processing is feeding the features to an
actual LTR system and building models accordingly. In this paper,
we discuss three paradigms for behavior feature incorporation in
LTR, namely ranking without behavior features, user feedback as
regular features, and, user feedback as independent evidence.

4.3.1 Ranking without Behavior Features. The first paradigm,which
is also one of the most popular paradigms used in academic studies,
is to build LTR models without any features extracted from user
interactions. In other words, the ranking function 𝑓 would be built
purely based on non-behavior features 𝑥𝑛𝑏 such as query-document
similarity scores (e.g., BM25), document quality scores (e.g., PageR-
ank) [43], etc. Formally, we refer to the model built with D under
this paradigm as

𝑓𝑤/𝑜 (𝑑, 𝑞, 𝜃𝑇) = 𝑓 (𝑥𝑛𝑏 |𝑑, 𝑞, 𝜃𝑇) (10)

where 𝜃𝑇 is the parameter of 𝑓 after training with D. The advan-
tages of such a paradigm is that all the features can be extracted
beforehand and fixed during the training and serving of LTR mod-
els. However, as our goal is to investigate the possibility of using
behavior features for LTR, this paradigm is mainly served as a
baseline in this paper.

4.3.2 User Feedback as Regular Features. The second paradigm to
incorporate click features in LTR is to treat them in the same way
with other regular features. Formally, we have

𝑓𝑅 (𝑑, 𝑞, 𝜃𝑇) = 𝑓 ([𝑥𝑛𝑏 , 𝑥𝑏] |𝑑, 𝑞, 𝜃𝑇) (11)

where [𝑥𝑛𝑏 , 𝑥𝑏] represents the concatenation of non-behavior fea-
tures 𝑥𝑛𝑏 and behavior feature 𝑥𝑏 . As most existing LTR models
such as regression trees [15] and neural networks [4, 11, 12] have
the ability to automatically adapt and use input features without
knowing their structures and meanings, this paradigm is one of the
most natural methods to extend LTR models with new features. It
has been widely used in IR industry. Specifically, we could either
use CTR or Δ𝑇 (𝑑 |𝑞) as 𝑥𝑏 in Eq. (11).

1Note that Δ𝑇 (𝑑 |𝑞) could be negative and -2 is smaller than the minimum value of
Δ𝑇 (𝑑 |𝑞) that we have observed in our experiments.

Can clicks be both labels and features? Unbiased Behavior Feature Collection and Uncertainty-aware Learning to Rank SIGIR’22, July 11-15, 2022, Madrid, Spain

4.3.3 User Feedback as Independent Evidence. While the incorpo-
ration of behavior features as regular features is appealing, it could
also introduce severe over-fitting problems to model training when
click data are used to extract both labels and features for LTR. For
example, previous studies on unbiased learning to rank derive loss
functions directly from click data. When we use clicks as behavior
features, 𝑥𝑏 could easily dominate the training of 𝑓𝑅 (𝑑, 𝑞, 𝜃𝑇) (due
to its high correlation to the training labels) and make 𝑥𝑛𝑏 look
useless in many cases. Such phenomenon is particularly harmful
when we rank new documents or documents that are underex-
plored in historical data because these documents may not have 𝑥𝑏
in advance. To address this problem, inspired by the idea of directly
re-ranking documents with user interactions [3], we propose to
treat 𝑥𝑏 as independent ranking evidence and combine it with LTR
models built on non-behavior features as

𝑓𝐼𝐸 (𝑑, 𝑞, 𝜃𝑇) =
{
Δ𝑇 (𝑑, 𝑞), if 𝐶𝑢𝑚𝑇 [𝛼𝑑,𝑞𝑡] > 0
𝑓 (𝑥𝑛𝑏 |𝑑, 𝑞, 𝜃𝑇), if 𝐶𝑢𝑚𝑇 [𝛼𝑑,𝑞𝑡] = 0

(12)

The motivation is to rank documents that haven’t been shown to
users with non-behavior features so that they won’t be punished
due to the cold start problem. Oncewe collect more user interactions
on the documents, we directly rank them with Δ𝑇 (𝑑, 𝑞) since it is
an unbiased estimation of 𝑃 (𝑅=1|𝑑, 𝑞). For simplicity, we directly
train 𝑓 to predict the estimated document relevance (as discussed in
Section 6.1.4) so that 𝑓 (𝑥𝑛𝑏 |𝑑, 𝑞, 𝜃𝑇) and Δ𝑇 (𝑑, 𝑞) are comparable.
We leave more advanced methods to train 𝑓 for future studies.

5 UNCERTAINTY-AWARE LEARNING TO
RANK

While the utilization of unbiased learning techniques can alleviate
the problem of position bias and trust bias in click features, there
is another type of bias that remains unsolved in behavior feature
collection, which we refer to as the exploitation bias. Exploitation
bias is a type of data bias introduced by the dynamic training and
serving LTR systems. A similar concept frequently used in the
studies of unbiased learning to rank is the selection bias [59]. The
selection bias focuses on biased label distributions created by user
behaviors and system interfaces, i.e., user clicks cannot be collected
on documents lower than certain ranks due to the limited display
space of user interfaces. As shown in Section 6.2, such bias can
be effectively reduced with unbiased LTR techniques and ranking
features with click-independent feature distributions. In contrast,
exploitation bias focuses on biased data distributions that appear
when we use click-dependent features in LTR. When we use clicks
collected on previous ranking systems to extract behavior features,
documents explored by old online systems will receive significant
advantages in terms of feature collection compared to other docu-
ments. This bias in input feature distribution will inevitably affect
the training of LTR systems despite of whether we have unbiased
training labels or not.

In order to address exploitation bias, online LTR systems need
to guarantee that all candidate documents, no matter old or new,
should be explored in a certain amount of sessions so that they
can collect enough user feedback to extract reliable behavior fea-
tures. Specifically, there are two key problems: (1) what documents
we should explore in each session, and (2) how we explore those

documents by balancing the quality of feedback collection and
the performance of online systems. In this section, we propose an
uncertainty-aware learning-to-rank framework to address the ex-
ploitation bias. The basic idea is that we should explore a document
when we are uncertain about its relevance. After we gradually col-
lect more user feedback on the document and have more confidence
in our prediction, the exploration rate should be reduced in order
to guarantee the overall quality of online services. To achieve these
goals, we propose to conduct ranking exploration with the upper
confidence bound selection and discuss how to estimate ranking
uncertainty with different ranking paradigms.

5.1 Exploration with Upper Confidence Bound
Upper Confidence Bound (UCB) selection [8, 9] refers to a classic
exploration algorithm that have been widely used in bandit learn-
ing [13, 29]. Intuitively, UCB follows the principle of optimism in
the face of uncertainty which implies that if we are uncertain about
an action, we should optimistically assume that it is the correct
action [47]. In ranking problems, this indicates that, when we are
uncertain about a document, we should explore it by using the
upper confidence bound of its predicted score for ranking.

Formally, suppose that we have trained and updated the online
system with the clicks and features extracted from dataset D at
time step𝑇 . Let 𝑒𝑠𝑡 (𝑑, 𝑞) be the estimated uncertainty of 𝑑 in 𝑞, then
we propose to conduct ranking exploration with the framework of
UCB as the followings:

𝑠𝑡 (𝑑, 𝑞𝑡) = 𝑓 (𝑑, 𝑞𝑡 , 𝜃𝑇) + 𝜆𝑒𝑠𝑡 (𝑑, 𝑞𝑡), for 𝑡 > 𝑇 (13)

where 𝑓 (𝑑, 𝑞𝑡 , 𝜃𝑇) is the original ranking score predicted by LTR
models, and 𝜆 is a hyper-parameter that controls the weights of
exploration. The final ranked list shown to users is computed as

𝜋𝑡 = arg𝑡𝑜𝑝𝐾
(
𝑠𝑡 (𝑑, 𝑞𝑡) ∈ 𝐷𝑞𝑡

)
(14)

where arg𝑡𝑜𝑝𝐾 means sorting and selecting the top 𝐾 documents to
from 𝜋𝑡 . In this paper, we assume that each session can only show at
most𝐾 documents to users. By sorting documents according to both
their ranking scores and uncertainty, we can explore documents
based on our confidence in their relevance. As shown in Section 6.2,
this can help us efficiently reduce the exploitation bias in behavior
features and LTR models. The only remaining question is how to
estimate the uncertainty of each (𝑞, 𝑑) pair.

5.2 Uncertainty Estimation in Ranking
A well-established method to estimate uncertainty in UCB is to use
the variance of model outputs. In ranking problems, we can treat
the predicted ranking score of each document as model outputs
and estimate the uncertainty of each (𝑞, 𝑑) pair as

𝑒𝑠𝑡 (𝑑, 𝑞) = 𝑠𝑡𝑑
(
𝑓 (𝑑, 𝑞𝑡 , 𝜃𝑇)

)
(15)

where 𝑠𝑡𝑑 is the function of standard deviation. Depending on how
we derive 𝑓 (𝑑, 𝑞𝑡 , 𝜃𝑇) in Section 4.3, we propose different methods
to estimate the standard deviation of ranking outputs in this section.

5.2.1 Model-based uncertainty estimation. As most LTR functions
are directly implemented with machine learning models, the most
straightforward method to estimate uncertainty in ranking is to
compute the standard deviation of the machine learning models.

SIGIR’22, July 11-15, 2022, Madrid, Spain Tao Yang, Chen Luo, Hanqing Lu, Parth Gupta, Bing Yin, and Qingyao Ai

Previous studies have developed a variety of algorithms to compute
the standard deviation of model output for different ML models [22,
24]. For example, since many neural models use dropout [52] as
efficient regularization for parameter learning, a common method
to estimate the variance of neural ranking models [17, 42] is to
adapt Monte Carlo Dropouts [28]. Intuitively, during the inference
of a (𝑞, 𝑑) pair, we can conduct Monte Carlo dropouts on the last
layer of neural networks by dropping neuron outputs with factor
𝑧𝜃 (randomly sampled from a uniform Bernoillis distribution) for
𝑁 times and get 𝑁 different output scores {𝑓 (𝑑, 𝑞𝑡 , 𝑧𝑖𝜃 , 𝜃

𝑇)} (for 𝑖
from 1 to 𝑁). The standard deviation of 𝑓 (𝑑, 𝑞𝑡 , 𝜃𝑇) can then be
computed as

𝑠𝑡𝑑
(
𝑓 (𝑑, 𝑞𝑡 , 𝜃𝑇)

)
=

√√√
1
𝑁

𝑁∑︁
𝑖=1

(
𝑓 (𝑑, 𝑞𝑡 , 𝑧𝑖𝜃 , 𝜃

𝑇) − E[𝑓]
)2 (16)

where E[𝑓] = 1
𝑁

∑𝑁
𝑖=1 𝑓 (𝑑, 𝑞𝑡 , 𝑧𝑖𝜃 , 𝜃

𝑇). For simplicity, we imple-
ment all ranking models in this paper with deep neural networks,
so Monte Carlo dropouts can be directly used to estimate the uncer-
tainty of 𝑓𝑤/𝑜 (𝑑, 𝑞𝑡 , 𝜃𝑇) in Eq. (10) and 𝑓𝑅 (𝑑, 𝑞𝑡 , 𝜃𝑇) in Eq. (11). We
leave the discussion of other types of ranking models with other
uncertainty estimation methods for future studies.

5.2.2 Interaction-based uncertainty estimation. When using be-
havior features as independent evidence (e.g., Section 4.3.3), the
uncertainty of model outputs involve two separate parts: the un-
certainty of ranking models based on non-behavior features (i.e.,
𝑓 (𝑥𝑛𝑏 |𝑑, 𝑞𝑡 , 𝜃𝑇)), and the uncertainty of behavior evidenceΔ𝑇 (𝑑, 𝑞𝑡)
built fromuser interactions. The standard deviation of 𝑓 (𝑥𝑛𝑏 |𝑑, 𝑞𝑡 , 𝜃𝑇)
can be extracted easily based on model-based uncertainty estima-
tion methods described above. Here we only discuss how to derive
the uncertainty of Δ𝑇 (𝑑, 𝑞𝑡).

For simplicity, let 𝐶𝑢𝑚[𝐶] =𝐶𝑢𝑚[𝐶𝑑,𝑞], 𝐶𝑢𝑚[𝛽] =𝐶𝑢𝑚[𝛽𝑑,𝑞],
𝐶𝑢𝑚[𝛼]=𝐶𝑢𝑚[𝛼𝑑,𝑞], and 𝐶𝑖 =𝐶𝑑,𝜋 . According to Eq. (9), we have

E𝑐 [Δ𝑇 (𝑑, 𝑞𝑡)]2 = 𝑃 (𝑅 = 1|𝑑, 𝑞)2

=
E𝑐 [𝐶𝑢𝑚[𝐶]]2 − 2E𝑐 [𝐶𝑢𝑚[𝐶]]𝐶𝑢𝑚[𝛽] +𝐶𝑢𝑚[𝛽]2

𝐶𝑢𝑚[𝛼]2
(17)

Also, we have

E𝑐 [𝐶𝑢𝑚[𝐶]2] = E𝑐 [
𝑇𝑑∑︁
𝑖

𝐶𝑖 +
𝑇𝑑∑︁
𝑗

𝑇𝑑∑︁
𝑘≠𝑗

𝐶 𝑗𝐶𝑘]

= E𝑐 [
𝑇𝑑∑︁
𝑖

𝐶𝑖] + E𝑐 [
𝑇𝑑∑︁
𝑗

𝑇𝑑∑︁
𝑘≠𝑗

𝐶 𝑗𝐶𝑘]

= E𝑐 [𝐶𝑢𝑚[𝐶]] +
𝑇𝑑∑︁
𝑗

𝑇𝑑∑︁
𝑘≠𝑗

E𝑐 [𝐶 𝑗] E𝑐 [𝐶𝑘]

= E𝑐 [𝐶𝑢𝑚[𝐶]] +
𝑇𝑑∑︁
𝑗

𝑇𝑑∑︁
𝑘

E𝑐 [𝐶 𝑗] E𝑐 [𝐶𝑘] −
𝑇𝑑∑︁
𝑚

(E𝑐 [𝐶𝑚])2]]

= E𝑐 [𝐶𝑢𝑚[𝐶]] + E𝑐 [𝐶𝑢𝑚[𝐶]]2 −
𝑇𝑑∑︁
𝑚

(E𝑐 [𝐶𝑚])2

(18)

Accordingly, we can compute the variance of Δ𝑇 (𝑑, 𝑞𝑡) as

𝑉𝑎𝑟𝑐 [Δ] = E𝑐
[
(𝐶𝑢𝑚[𝐶] −𝐶𝑢𝑚[𝛽]

𝐶𝑢𝑚[𝛼] − E𝑐 [Δ])2
]

= E𝑐 [(
𝐶𝑢𝑚[𝐶] −𝐶𝑢𝑚[𝛽]

𝐶𝑢𝑚[𝛼])2] − E𝑐 [Δ]2

=
E𝑐 [𝐶𝑢𝑚[𝐶]] −∑𝑇𝑑

𝑚 (E𝑐 [𝐶𝑚])2

(𝐶𝑢𝑚[𝛼])2

=

∑𝑇𝑑
𝑚 (E𝑐 [𝐶𝑚]) −∑𝑇𝑑

𝑚 (E𝑐 [𝐶𝑚])2

(𝐶𝑢𝑚[𝛼])2

(19)

Unfortunately, the variance estimated with Eq. (19) is difficult to
compute because it involves the computation of expected cumulated
clicks and cumulated 𝛼 (i.e., E𝑐 [𝐶𝑢𝑚[𝐶]] and𝐶𝑢𝑚[𝛼]2). To further
simplify the estimation, we assume that 𝛼 is restricted in range
[𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥]. Then we have

𝑉𝑎𝑟𝑐 [Δ] =
∑𝑇𝑑
𝑚 (E𝑐 [𝐶𝑚]) −∑𝑇𝑑

𝑚 (E𝑐 [𝐶𝑚])2

(𝐶𝑢𝑚[𝛼])2

<

∑𝑇𝑑
𝑚 (E𝑐 [𝐶𝑚])
(𝐶𝑢𝑚[𝛼])2

<
𝑇𝑑

(𝑇𝑑𝛼𝑚𝑖𝑛)2
∝ 1
𝑇𝑑

(20)

We observe that 𝑉𝑎𝑟𝑐 [Δ] follows a decay function less than 1/𝑇𝑑 ,
which can serve as a good approximation. Empirically, because
ranking by Δ𝑇 (𝑑, 𝑞) is more likely to be dominated by old doc-
uments when query frequency (𝑇𝑞) is high, we further encour-
age exploration based on 𝑇𝑞 and approximate 𝑠𝑡𝑑 (Δ𝑇 (𝑑, 𝑞𝑡)) with√︁
log(𝑇𝑞)/𝑇𝑑 .

6 EXPERIMENTS
In this section, we evaluate the effectiveness of proposed techniques
with experiments on public LTR datasets. Our goal is to validate
whether the proposed unbiased feature projection and uncertain-
aware LTR algorithms can effectively construct reliable ranking
models by using click data as both features and labels.

6.1 Experimental setup
6.1.1 Datasets. In our experiments, we adopted four publicly avail-
able LTR datasets, i.e., MQ2007, MQ2008 [43], MSLR-10K, and
MSLR-30K2. Table 1 shows the general statistics of each dataset.
Queries in each dataset are divided into training, validation, and
test partitions. MSLR-10K/MSLR-30K have five-level relevance judg-
ments (from 0 to 4) andMQ2007/MQ2008 have three-level relevance
judgments for each query-document pair. The original feature sets
of MSLR-10K/MSLR-30K have three behavior features (i.e., feature
134-136) collected from user behavior data. For reliable evalua-
tion, we remove them in advance. All features in MQ2007/MQ2008
are non-behavior features. Therefore, all datasets only have non-
behavior features (i.e., 𝑥𝑛𝑏) at the beginning of our experiments.

We note that there are other popular large-scale LTR datasets
available to the public, such as Yahoo! Letor Dataset [14] and Istella
Dataset [20]. However, these datasets are not applicable to this pa-
per because they contain behavior features collected from previous
search logs and do not reveal their identity. The goal of this paper

2https://www.microsoft.com/en-us/research/project/mslr/

https://www.microsoft.com/en-us/research/project/mslr/

Can clicks be both labels and features? Unbiased Behavior Feature Collection and Uncertainty-aware Learning to Rank SIGIR’22, July 11-15, 2022, Madrid, Spain

Table 1: Datasets statistics.

Datasets # Queries # Average docs per query # Unique features
MQ2007 1643 41 46
MQ2008 728 20 46
MSLR-10k 9835 122 133
MSLR-30k 30995 121 133

is to investigate the effect of using clicks as both features and labels
in LTR, but the existing behavior features in these datasets could
pollute our experiment and make it difficult to see whether the sys-
tem is affected by the behavior features collected in our experiment
or the behavior features already presented in these datasets.

6.1.2 Session Sampling and Simulation. Following previous stud-
ies [7, 34, 55, 57], we simulate user interactions to evaluate different
LTR models. Specifically, this includes the simulation of search
sessions, clicks, and cold-start documents.

Click Simulation. At each time step, we randomly sample a
query from the training, validation, or test partition, and then cre-
ate a ranked list with the current ranking model. The relevance
probabilities of each document-query pair are simulated with their
relevance label 𝑦 as 𝑃 (𝑅 = 1|𝑑, 𝑞) = 𝑦 (𝑑,𝑞)

𝑦𝑚𝑎𝑥
where 𝑦𝑚𝑎𝑥 is 2 or 4 de-

pending on the dataset. Clicks are then simulated with 𝑃 (𝐶 = 1|𝑑, 𝑞)
(computed in Eq. (2)) on top 5 (i.e., 𝐾 = 5) of each ranked list with
𝛼 = [0.35, 0.53, 0.55, 0.54, 0.52] and 𝛽 = [0.65, 0.26, 0.15, 0.11, 0.08]3.
Note that we only use the sessions sampled from training partitions
to train LTR models. We sample sessions from validation and test
together only to collect user behavior features on the fly.

New Item Simulation. In practice, new documents/items fre-
quently come to the retrieval collection during the serving of LTR
systems. To simulate such cold-start scenarios, at the beginning of
each experiment, we randomly sample only 5 to 10 documents for
each query as their candidate sets and mask all other documents.
Then, at each time step 𝑡 with sampled query 𝑞𝑡 , with 50% prob-
ability, we randomly sampled one masked document and add it
to the candidate set of 𝑞𝑡 . Depending on the averaged number of
document candidates for each query, this means that we need to
simulate roughly 134k, 30k, 2.4M, and 7.6M sessions for MQ2007,
MQ2008, MSLR-10K, and MSLR-30K, respectively, in order to add
most documents into each query in the simulated experiments.

6.1.3 Baselines. In this paper, we compare the proposed techniques
with baselines using different feature settings and exploration strate-
gies for LTR. Specifically, in terms of how to extract and incorporate
behavior features, we have four feature settings as

• Feature-w/o-behav.: Construct LTR models without behav-
ior features as described in Eq (10).

• Feature-w-ctr: Construct LTR models using Eq. (11) with
the raw CTR of each document as the behavior features (𝑥𝑏).

• Feature-w-Δ: Construct LTR models using Eq. (11) with the
proposed feature Δ𝑇 (𝑑 |𝑞) as the behavior features (𝑥𝑏).

• Feature-IE: Construct LTR models using Eq. (12) where
Δ𝑇 (𝑑 |𝑞) is used as independent evidence for ranking.

Also, we tested five ranking exploration algorithms:

3The value of 𝛼 and 𝛽 were chosen based on used studies from Agarwal et al. [2].

• Top-k: Create ranked lists with top 𝑘 documents sorted by
LTR model scores (i.e., Eq (13) with 𝜆 = 0).

• Random-k: Create ranked lists with random 𝑘 documents
from the candidate set 𝐷𝑞𝑡 at each time step.

• EpsilonRank: Create ranked lists with Eq (13) and 𝑒𝑠𝑡 (𝑑, 𝑞)
randomly uniformly sampled from [0, 1], similar to [32]4.

• PDGD: The state-of-the-art online LTR algorithm [38] that
sample ranked lists stochastically with PL distributions.

• UCBRank: Our proposed uncertainty-aware LTR algorithm
using model uncertainty as 𝑒𝑠𝑡 (𝑑, 𝑞) in Eq (13).

Note that PDGD requires a single scoring function 𝑓 to conduct
stochastic ranking sampling, so it is incompatible with Feature-IE.

6.1.4 Implementation and Model Updates. Compared to updating
model parameters online, updating ranking features in LTR systems
is relatively easy and time-efficient. To better mimic the periodic
training and serving process of LTR systems in practice, we update
behavior features more frequently than model parameters in our
experiments. Specifically, on each dataset, we update behavior fea-
tures 100 times and only update model parameters 20 times. For
example, on MQ2007 with 20k simulated sessions, this means up-
dating behavior features every 200 sessions while updating model
parameters every 1k sessions. For a feature update at time step
𝑇 , we update behavior features for all query-document pairs with
clicks collected before 𝑇 ; For a model update at time step 𝑇 , we
retrain the LTR models only with clicks collected on queries from
the training set before 𝑇 . At time step 𝑡 , the most recently updated
behavior features and ranking model will be used (𝑇 < 𝑡). So there
is no risk of future information leakage. Note that this is similar
to the practice of LTR systems in real applications where we pe-
riodically use the click logs collected before a certain timestamp
to compute the behavior features and build training datasets to
train/update the service models online.

For LTR models, we implemented the ranking function 𝑓 using
feed-forward neural networks with 2 hidden layers (32 neurons
per layer). We implemented the loss function in Eq. (1) with mean
square errors and estimated 𝑃 (𝑅 = 1|𝑞, 𝑑) with Δ𝑇 (𝑑 |𝑞). We set
the number of inference trials (i.e., 𝑁 in Eq. (16)) as 10 for model-
based uncertainty estimation. Other hyper-parameters including 𝜆
are tuned based on sessions sampled from the validation set. The
experimental scripts and implementations used in this paper are
available online5.

6.1.5 Evaluation. We evaluate all models with two standard rank-
ing metrics. The first is the Cumulative NDCG (c-NDCG) which
measures the overall ranking quality of ranking systems in online
learning and serving processes. Following previous studies [57], we
use c-NDCG as a discounted accumulation of ranking lists’ NDCG
at each time step with discounted factor 𝛾 = 0.995. The second one
is the standard NDCG on ranked lists sorted by the final ranking
models learned by each algorithm after training. We tested both
the situations with (i.e., warm setting) or without (i.e., cold setting)
behavior features collected from click history. For simplicity, we
use rank cutoff 5 and compute iDCG in both c-NDCG and NDCG

4EpsilonRank adds random perturbation (i.e., 𝜖) to ranking scores directly instead of
using it to randomly select items as in [32], but the motivations and effects are similar.
5https://github.com/Taosheng-ty/UCBRankSIGIR2022.git

https://github.com/Taosheng-ty/UCBRankSIGIR2022.git

SIGIR’22, July 11-15, 2022, Madrid, Spain Tao Yang, Chen Luo, Hanqing Lu, Parth Gupta, Bing Yin, and Qingyao Ai

Table 2: The online performance (c-NDCG@5) of each algo-
rithm on the test partitions of each dataset. ∗ and † indicate
statistical significance over other models in the same or all
feature settings, respectively.

Feature
settings

Online
Algorithms

Datasets
MQ2007 MQ2008 MSLR-10k MSLR-30k

Feature-
w/o-
behav.

Top-k 93.14 121.9 103.6 106.6
Random-k 59.96 76.42 59.88 73.55
EpsilonRank 95.70 119.2 102.9 106.1
PDGD 86.52 95.93 100.8 98.10
UCBRank 97.03∗ 128.7∗ 104.2 104.1

Feature-
w-ctr

Top-k 113.1 143.7 106.2 105.7
Random-k 63.58 76.27 61.55 74.52
EpsilonRank 151.8∗ 163.1∗ 125.5 133.8
PDGD 145.3 122.4 117.8 122.0
UCBRank 149.9 147.7 142.0∗ 134.7

Feature-
w-Δ

Top-k 77.94 109.4 82.03 96.87
Random-k 60.74 78.42 61.48 74.38
EpsilonRank 96.51 118.4 100.3 112.4
PDGD 110.7 161.0 100.4 113.0
UCBRank 167.3∗ 172.0∗ 166.0∗† 163.6∗

Feature-
IE

Top-k 136.5 149.1 125.5 133.8
Random-k 58.96 77.18 59.58 71.31
EpsilonRank 159.1 165.0 138.0 150.2
UCBRank 172.0∗† 174.0∗† 159.0∗ 167.7∗†

with all documents in each dataset. Significant tests are conducted
with the Fisher randomization test [51] with 𝑝 < 0.05.

Please note all metrics are computed on the test set using the
ground truth relevance labels. There is no risk of label leakage
because all models are built with the click data collected in the
simulation process on the training set. We do collect clicks on
validation and test queries in the simulation process to construct
the behavior features for their candidate documents, but those
data and features have neither been seen nor used in the training
of the LTR models. In this way, our experiment can effectively
evaluate LTR systems in both the scenarios where we encounter
new queries with no click history on any candidate documents (i.e.,
the cold setting) and the scenarios where the queries are new to
the system but some of the candidate documents have behavior
features collected from previous click logs (i.e., the warm setting).

6.2 Results
We now describe the results of our experiments. Table 2 shows the
overall performance of each algorithm in training and online serv-
ing. Table 3 shows the performance of the final ranking model with
(i.e., warm settings) or without (i.e., cold settings) behavior features
collected from previous clicks. As shown in the tables, incorpo-
rating behavior features extracted from clicks usually increases
the performance of ranking models, e.g., the Feature-w-ctr models
are better than their Feature-w/o-behav. versions on c-NDCG@5
for more than 10% in most cases. However, depending on how we
extracted and used the behavior features, the improvements varied
dramatically among different algorithms.

6.2.1 Does the proposed unbiased feature projection function alle-
viate biases in behavior features? As discussed in Section 4.2, the
unbiased feature projection function can resolve position bias and

0 1000000 2000000
Time step at which the item was introduced to the system

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cl
ick

 R
at

es

UCBRank+Feature-IE
EpsilonRank+Feature-IE
Top-k+Feature-IE
Random-k+Feature-IE

Figure 1: Click rates (#clicks on the item
#sessions with the item as candidate) on per-

fect documents (i.e., label 4) that entered the system at dif-
ferent time steps in the online experiments of MSLR-10k.

trust bias in theory, so we expect models with Feature-w-Δ to
outperform models with Feature-w-ctr in all cases. However, ac-
cording to our experiments, this hypothesis seems to be unreliable.
As shown in Table 2&3, except for UCBRank, we haven’t observed
significant evidence proving that Feature-w-Δ models are superior
than Feature-w-ctr models. There could be two explanations. First,
the introduction of feature projection with 𝛼 and 𝛽 may increase
the variance in behavior features, which hurts the robustness of
certain algorithms. For example, in contrast to Feature-w-Δ, we
observed that Feature-IE models (except for Random-k) always out-
perform their Feature-w-ctr versions in Table 2. This indicates that,
when using together with other features (i.e., Feature-w-Δ), the
variance introduced by feature projections may affect complicated
ranking models (e.g., neural networks). The second explanation is
that the effect of correcting position bias and trust bias has been
overwhelmed by the exploitation bias in behavior features. A piece
of evidence for this is that, once we alleviated the exploitation bias
in behavior feature collections (as discussed later in this section),
Feature-w-Δ with UCBRank have achieved consistent improve-
ments over all Feature-w-ctr models. Therefore, exploitation bias is
a more significant bias in feature collection that prevents us from
directly observing the benefits of unbiased feature projections.

6.2.2 Can our uncertainty-aware LTR framework address the ex-
ploitation bias in behavior feature collection? In general, we believe
that the exploitation bias in behavior features is solved if all docu-
ments, no matter when they are introduced into the system, can
be ranked according to their intrinsic relevance correctly. This can
be observed in the final performance of LTR models learned by
each algorithm in warm settings. As shown in Table 3 (warm set-
tings), after correcting the position bias and trust bias in behavior
feature computation, UCBRank have significantly outperformed
all other algorithms with the same feature settings in Feature-w-
Δ and Feature-IE. Note that this superior performance is achieved
in the online simulations where new documents are constantly
introduced to each query session. In Figure 1, we plot the click rates

Can clicks be both labels and features? Unbiased Behavior Feature Collection and Uncertainty-aware Learning to Rank SIGIR’22, July 11-15, 2022, Madrid, Spain

Table 3: The offline performance (NDCG@5) of each algorithm on the test partitions of each dataset. ∗ and † indicate statistical
significance over other models in the same or all feature settings, respectively. We tested both situations with (i.e., warm setting)
or without (i.e., cold setting) behavior features collected from the periodic training and serving process.

Feature
settings

Online
Algorithms

Warm Settings Cold Settings
MQ2007 MQ2008 MSLR-10k MSLR-30k MQ2007 MQ2008 MSLR-10k MSLR-30k

Feature-w/o-
behav.

Top-k 0.472 0.610 0.482 0.497 0.472 0.610 0.482 0.497
Random-k 0.497 0.607 0.477 0.491 0.497 0.607 0.477 0.491
EpsilonRank 0.486 0.618 0.480 0.497 0.486 0.618 0.480 0.497
PDGD 0.493 0.632 0.467 0.464 0.493 0.632 0.467 0.464
UCBRank 0.497 0.643∗ 0.482 0.496 0.497 0.643∗ 0.482 0.496

Feature-w-ctr

Top-k 0.578 0.717 0.490 0.428 0.403∗ 0.505 0.251 0.282
Random-k 0.804∗ 0.875∗ 0.676 0.684 0.325 0.445 0.364∗ 0.336
EpsilonRank 0.780 0.839 0.724 0.698 0.364 0.401 0.302 0.324
PDGD 0.735 0.830 0.565 0.537 0.366 0.636∗ 0.342 0.372∗

UCBRank 0.793 0.747 0.695∗ 0.712∗ 0.370 0.528 0.331 0.267

Feature-w-Δ

Top-k 0.382 0.541 0.359 0.361 0.381 0.540 0.313 0.226
Random-k 0.772 0.871 0.609 0.618 0.414 0.552 0.232 0.198
EpsilonRank 0.505 0.632 0.453 0.454 0.398 0.543 0.265 0.216
PDGD 0.553 0.836 0.456 0.454 0.379 0.584∗ 0.364∗ 0.371∗

UCBRank 0.864∗ 0.885∗ 0.815∗ 0.819∗ 0.415 0.542 0.239 0.204

Feature-IE

Top-k 0.681 0.758 0.612 0.635 0.461 0.617 0.451 0.485
Random-k 0.758 0.872 0.587 0.597 0.515∗† 0.625 0.477 0.492
EpsilonRank 0.818 0.876 0.789 0.755 0.466 0.619 0.475 0.485
UCBRank 0.887∗† 0.893∗ 0.836∗† 0.825∗† 0.496 0.622 0.461 0.489

(#clicks on the item
#sessions with the item as candidate) on perfect relevant documents (i.e.,
label 4) that were introduced into the system at different time
steps in online experiments. Without addressing the exploitation
bias, clicks on old relevant documents (i.e., perfect documents in-
troduced at early time steps) dominated the Top-k model, which
made new relevant documents (i.e., perfect documents introduced
at late time steps) received almost no click from users. When we
conducted too much exploration (i.e., Random-k), the click rates of
relevant documents introduced at different time steps are similarly
low because all documents were shown without considering their
utility to users. In contrast, with UCBRank, relevant documents re-
ceived significantly more clicks than those in other algorithms, and
the improvement margins are particularly large for new relevant
documents. This demonstrates the effectiveness of our uncertainty-
aware LTR framework in alleviating exploitation bias and correctly
identifying new relevant documents on the fly.

As shown in Figure 2, when we changed the strength of explo-
ration with 𝜆 in Eq. (13), we observed that UCBRank with Feature-
IE can outperform other uncertainty-oblivious exploration strate-
gies (i.e., EpsilonRank) in all feature settings. This indicates that
UCBRank with Feature-IE is a robust algorithm that can effectively
extract unbiased behavior features and unbiased ranking models
while balancing user experience with ranking exploration.

6.2.3 Bias in Labels vs. Bias in Features. Previous studies on un-
biased LTR [2, 34, 39] only focus on biases in training labels (e.g.,
clicks) while ignoring the effect of biases in LTR features. In this
paper, we argue that biases in LTR features cannot be solved by
simply resolving biases in labels. In fact, bias in features could

0.4

0.5

0.6

0.7

0.8

ND
CG

@
5

Warm Settings

10 3 10 2 10 1 100 101 102

tradeoff parameter

0.20

0.25

0.30

0.35

0.40

0.45

0.50

ND
CG

@
5

Cold Settings

UCBRank+Feature-IE
EpsilonRank+Feature-IE
EpsilonRank+Feature-w-ctr
EpsilonRank+Feature-w-
EpsilonRank+Feature-w/o-behav.

Figure 2: The final test performance (offline) on MSLR-10k
with different exploration strength. Greater tradeoff param-
eter 𝜆 (in Eq.(13)) means more explorations.

be a more fundamental problem because addressing feature bi-
ases in some cases could alleviate or solve label biases implicitly.
For example, the selection bias [40, 41, 59] in training labels is
usually considered as an important problem in LTR. However, as

SIGIR’22, July 11-15, 2022, Madrid, Spain Tao Yang, Chen Luo, Hanqing Lu, Parth Gupta, Bing Yin, and Qingyao Ai

shown in Table 3, the final performance of Feature-w/o-behav. al-
gorithms that should severely suffer from the selection bias (i.e.,
Top-k) haven’t shown consistent differences with those that don’t
suffer from the selection bias (i.e., Random-k). In fact, Top-k even
outperforms Random-k and state-of-the-art online LTR algorithm
(e.g., PDGD) in Feature-w/o-behav. on MSLR-30k. This contradicts
the assumption that the selection bias in training labels should
hurt LTR performance. If we investigate the problem from feature
perspectives, this is actually not surprising. When ranking features
(e.g., the non-behavior features constructed from document statis-
tics) are extracted independently of the biases in training labels
(e.g., the selection bias), their distributions on relevant documents
would also be independent of the label biases. In this case, as long
as clicks are positively correlated to relevance, the selection bias
may not affect the final ranking models significantly. For example,
when we use BM25 as the only feature in LTR, the selection bias in
click labels wouldn’t prevent the model to learn that “documents
are more likely to be relevant when their BM25 scores are higher”.

When there are biases in LTR features, things are much more
complicated. On the one hand, any existing biases in labels could be
amplified by the biases in features. For instance, in Table 3 (warm
settings), the effect of the selection bias is significant in Feature-
w-ctr (e.g., Top-k is more than 20% worse than Random-k). On
the other hand, biases in features could also significantly hurt the
robustness of learning algorithms. When feeding behavior features
into neural rankers together with other features (i.e., Feature-w-
ctr and Feature-w-Δ), the optimization of model parameters was
quickly dominated by behavior features (no matter whether we re-
move the position/trust biases or not) due to their high correlations
to the training labels. As a result, the final models were extremely
sensitive to behavior features and performed terribly when behavior
features were missing (i.e., the cold settings in Table 3). By treating
behavior features as independent evidence (i.e., Feature-IE), such
problems can be alleviated and the UCBRank with Feature-IE can
significantly outperform other models with behavior features (i.e.,
warm settings) while keeping a reasonable performance in situa-
tions without behavior features (i.e., cold settings).

7 CONCLUSION AND FUTUREWORK
In this paper, we investigate the possibility of using clicks as both
labels and features for LTR systems. While behavior features ex-
tracted from raw clicks could bring significant improvements to
short-term retrieval performance, they could also hurt the long-
term effectiveness of LTR systems due to the click noise and ex-
ploitation bias in feature collection. To address these problems, we
proposed an unbiased feature projection function and an uncertainty-
aware LTR algorithm that significantly improve the robustness and
effectiveness of LTR models with behavior features.

While the consideration of model uncertainty can help us bet-
ter explore new items in feature collection, we also observed that
existing uncertainty estimation methods for LTR often produce
results that suffer from significant variance. As one of the future
directions, we plan to explore more on how to conduct effective
uncertainty estimation for ranking models and how to use it to
guide the training and data collection for LTR.

ACKNOWLEDGEMENTS
This work was supported in part by Amazon Search and in part
by the School of Computing, University of Utah. Any opinions,
findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
those of the sponsor.

REFERENCES
[1] Aman Agarwal, Kenta Takatsu, Ivan Zaitsev, and Thorsten Joachims. 2019. A

general framework for counterfactual learning-to-rank. In Proceedings of the 42nd
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 5–14.

[2] Aman Agarwal, Xuanhui Wang, Cheng Li, Michael Bendersky, and Marc Najork.
2019. Addressing trust bias for unbiased learning-to-rank. In The World Wide
Web Conference. 4–14.

[3] Eugene Agichtein, Eric Brill, and Susan Dumais. 2006. Improvingweb search rank-
ing by incorporating user behavior information. In Proceedings of the 29th annual
international ACM SIGIR conference on Research and development in information
retrieval. 19–26.

[4] Qingyao Ai, Keping Bi, Jiafeng Guo, and W Bruce Croft. 2018. Learning a deep
listwise context model for ranking refinement. In The 41st International ACM
SIGIR Conference on Research & Development in Information Retrieval. 135–144.

[5] Qingyao Ai, Keping Bi, Cheng Luo, Jiafeng Guo, and W Bruce Croft. 2018. Unbi-
ased learning to rank with unbiased propensity estimation. In The 41st Interna-
tional ACM SIGIR Conference on Research & Development in Information Retrieval.
385–394.

[6] Qingyao Ai, Jiaxin Mao, Yiqun Liu, andW Bruce Croft. 2018. Unbiased learning to
rank: Theory and practice. In Proceedings of the 27th ACM International Conference
on Information and Knowledge Management. 2305–2306.

[7] Qingyao Ai, Tao Yang, HuazhengWang, and Jiaxin Mao. 2021. Unbiased Learning
to Rank: Online or Offline? ACM Transactions on Information Systems (TOIS) 39,
2 (2021), 1–29.

[8] Peter Auer. 2002. Using confidence bounds for exploitation-exploration trade-offs.
Journal of Machine Learning Research 3, Nov (2002), 397–422.

[9] ZW Birnbaum and RC McCarty. 1958. A Distribution-Free Upper Confidence
Bound for \Pr{Y<X\}, Based on Independent Samples of X and Y. The Annals of
Mathematical Statistics (1958), 558–562.

[10] Christine L Borgman. 1983. End user behavior on an online information retrieval
system: A computer monitoring study. In Proceedings of the 6th annual interna-
tional ACM SIGIR conference on Research and development in information retrieval.
162–176.

[11] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,
and Greg Hullender. 2005. Learning to rank using gradient descent. In Proceedings
of the 22nd international conference on Machine learning. 89–96.

[12] Christopher JC Burges. 2010. From ranknet to lambdarank to lambdamart: An
overview. Learning 11, 23-581 (2010), 81.

[13] Alexandra Carpentier, Alessandro Lazaric, Mohammad Ghavamzadeh, Rémi
Munos, and Peter Auer. 2011. Upper-confidence-bound algorithms for active
learning in multi-armed bandits. In International Conference on Algorithmic Learn-
ing Theory. Springer, 189–203.

[14] Olivier Chapelle and Yi Chang. 2011. Yahoo! learning to rank challenge overview.
In Proceedings of the learning to rank challenge. PMLR, 1–24.

[15] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 785–794.

[16] Merlise Clyde and Edward I George. 2004. Model uncertainty. Statistical science
19, 1 (2004), 81–94.

[17] Daniel Cohen, Bhaskar Mitra, Oleg Lesota, Navid Rekabsaz, and Carsten Eickhoff.
2021. Not All Relevance Scores are Equal: Efficient Uncertainty and Calibration
Modeling for Deep Retrieval Models. arXiv preprint arXiv:2105.04651 (2021).

[18] Nick Craswell, Onno Zoeter, Michael Taylor, and Bill Ramsey. 2008. An ex-
perimental comparison of click position-bias models. In Proceedings of the 2008
international conference on web search and data mining. 87–94.

[19] J Shane Culpepper, Charles LA Clarke, and Jimmy Lin. 2016. Dynamic cutoff
prediction in multi-stage retrieval systems. In Proceedings of the 21st Australasian
Document Computing Symposium. 17–24.

[20] Domenico Dato, Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando,
Raffaele Perego, Nicola Tonellotto, and Rossano Venturini. 2016. Fast ranking
with additive ensembles of oblivious and non-oblivious regression trees. ACM
Transactions on Information Systems (TOIS) 35, 2 (2016), 1–31.

[21] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

Can clicks be both labels and features? Unbiased Behavior Feature Collection and Uncertainty-aware Learning to Rank SIGIR’22, July 11-15, 2022, Madrid, Spain

[22] Thomas G Dietterich and Eun Bae Kong. 1995. Machine learning bias, statistical
bias, and statistical variance of decision tree algorithms. Technical Report. Citeseer.

[23] David Draper. 1995. Assessment and propagation of model uncertainty. Journal
of the Royal Statistical Society: Series B (Methodological) 57, 1 (1995), 45–70.

[24] Allen L Edwards. 1985. Multiple regression and the analysis of variance and
covariance. WH Freeman/Times Books/Henry Holt & Co.

[25] Nicola Ferro, Claudio Lucchese, Maria Maistro, and Raffaele Perego. 2017. On
including the user dynamic in learning to rank. In Proceedings of the 40th In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval. 1041–1044.

[26] Nicola Ferro, Claudio Lucchese, Maria Maistro, and Raffaele Perego. 2020. Boost-
ing learning to rank with user dynamics and continuation methods. Information
Retrieval Journal 23, 6 (2020), 528–554.

[27] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting
machine. Annals of statistics (2001), 1189–1232.

[28] Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In international conference on
machine learning. PMLR, 1050–1059.

[29] Aurélien Garivier and Eric Moulines. 2011. On upper-confidence bound poli-
cies for switching bandit problems. In International Conference on Algorithmic
Learning Theory. Springer, 174–188.

[30] Jiafeng Guo, Yixing Fan, Liang Pang, Liu Yang, Qingyao Ai, Hamed Zamani, Chen
Wu, W Bruce Croft, and Xueqi Cheng. 2020. A deep look into neural ranking
models for information retrieval. Information Processing & Management 57, 6
(2020), 102067.

[31] Parth Gupta, Tommaso Dreossi, Jan Bakus, Yu-Hsiang Lin, and Vamsi Salaka.
2020. Treating Cold Start in Product Search by Priors. Association for Computing
Machinery, New York, NY, USA, 77–78. https://doi.org/10.1145/3366424.3382705

[32] Katja Hofmann, Shimon Whiteson, and Maarten de Rijke. 2013. Balancing ex-
ploration and exploitation in listwise and pairwise online learning to rank for
information retrieval. Information Retrieval 16, 1 (2013), 63–90.

[33] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri Gay.
2017. Accurately interpreting clickthrough data as implicit feedback. In ACM
SIGIR Forum, Vol. 51. Acm New York, NY, USA, 4–11.

[34] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased
learning-to-rank with biased feedback. In Proceedings of the Tenth ACM Interna-
tional Conference on Web Search and Data Mining. 781–789.

[35] Yen-Chieh Lien, Daniel Cohen, and W Bruce Croft. 2019. An assumption-free
approach to the dynamic truncation of ranked lists. In Proceedings of the 2019
ACM SIGIR International Conference on Theory of Information Retrieval. 79–82.

[36] Tie-Yan Liu. 2009. Learning to rank for information retrieval. Foundations and
Trends in Information Retrieval 3, 3 (2009), 225–331.

[37] Craig Macdonald, Rodrygo LT Santos, and Iadh Ounis. 2012. On the usefulness of
query features for learning to rank. In Proceedings of the 21st ACM international
conference on Information and knowledge management. 2559–2562.

[38] Harrie Oosterhuis and Maarten de Rijke. 2018. Differentiable unbiased online
learning to rank. In Proceedings of the 27th ACM International Conference on
Information and Knowledge Management. 1293–1302.

[39] Harrie Oosterhuis and Maarten de Rijke. 2020. Policy-aware unbiased learning
to rank for top-k rankings. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval. 489–498.

[40] Harrie Oosterhuis and Maarten de Rijke. 2021. Unifying Online and Counterfac-
tual Learning to Rank: A Novel Counterfactual Estimator that Effectively Utilizes
Online Interventions. In Proceedings of the 14th ACM International Conference on
Web Search and Data Mining. 463–471.

[41] Zohreh Ovaisi, Ragib Ahsan, Yifan Zhang, Kathryn Vasilaky, and Elena Zheleva.
2020. Correcting for selection bias in learning-to-rank systems. In Proceedings of
The Web Conference 2020. 1863–1873.

[42] Gustavo Penha and Claudia Hauff. 2021. On the Calibration and Uncertainty of
Neural Learning to Rank Models for Conversational Search. In Proceedings of
the 16th Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume. 160–170.

[43] Tao Qin and Tie-Yan Liu. 2013. Introducing LETOR 4.0 datasets. arXiv preprint
arXiv:1306.2597 (2013).

[44] Tao Qin, Tie-Yan Liu, Jun Xu, and Hang Li. 2010. LETOR: A benchmark collection
for research on learning to rank for information retrieval. Information Retrieval
13, 4 (2010), 346–374.

[45] Stephen E Robertson and Steve Walker. 1994. Some simple effective approxi-
mations to the 2-poisson model for probabilistic weighted retrieval. In SIGIR’94.
Springer, 232–241.

[46] Haggai Roitman, Shai Erera, and Bar Weiner. 2017. Robust standard deviation
estimation for query performance prediction. In Proceedings of the ACM SIGIR
International Conference on Theory of Information Retrieval. 245–248.

[47] Mohd Sami. [n. d.]. Upper Confidence Bound Algorithm in Reinforcement
Learning. https://www.geeksforgeeks.org/upper-confidence-bound-algorithm-in-
reinforcement-learning/.

[48] Anne Schuth, Robert-Jan Bruintjes, Fritjof Buüttner, Joost van Doorn, Carla
Groenland, Harrie Oosterhuis, Cong-Nguyen Tran, Bas Veeling, Jos van der

Velde, Roger Wechsler, et al. 2015. Probabilistic multileave for online retrieval
evaluation. In Proceedings of the 38th International ACM SIGIR Conference on
Research and Development in Information Retrieval. 955–958.

[49] Anne Schuth, Harrie Oosterhuis, Shimon Whiteson, and Maarten de Rijke. 2016.
Multileave gradient descent for fast online learning to rank. In Proceedings of the
Ninth ACM International Conference on Web Search and Data Mining. 457–466.

[50] Anna Shtok, Oren Kurland, David Carmel, Fiana Raiber, and Gad Markovits. 2012.
Predicting query performance by query-drift estimation. ACM Transactions on
Information Systems (TOIS) 30, 2 (2012), 1–35.

[51] Mark D Smucker, James Allan, and Ben Carterette. 2007. A comparison of
statistical significance tests for information retrieval evaluation. In Proceedings
of the sixteenth ACM conference on Conference on information and knowledge
management. 623–632.

[52] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research 15, 1 (2014), 1929–1958.

[53] Anh Tran, Tao Yang, and Qingyao Ai. 2021. ULTRA: An Unbiased Learning To
Rank Algorithm Toolbox. In Proceedings of the 30th ACM International Conference
on Information & Knowledge Management. 4613–4622.

[54] Arif Usta, Ismail Sengor Altingovde, Rifat Ozcan, and Ozgur Ulusoy. 2021. Learn-
ing to Rank for Educational Search Engines. IEEE Transactions on Learning
Technologies (2021).

[55] Ali Vardasbi, Harrie Oosterhuis, and Maarten de Rijke. 2020. When Inverse
Propensity Scoring does not Work: Affine Corrections for Unbiased Learning to
Rank. In Proceedings of the 29th ACM International Conference on Information &
Knowledge Management. 1475–1484.

[56] Huazheng Wang, Yiling Jia, and Hongning Wang. 2021. Interactive Information
Retrieval with Bandit Feedback. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 2658–2661.

[57] Huazheng Wang, Sonwoo Kim, Eric McCord-Snook, QingyunWu, and Hongning
Wang. 2019. Variance reduction in gradient exploration for online learning to
rank. In Proceedings of the 42nd International ACM SIGIR Conference on Research
and Development in Information Retrieval. 835–844.

[58] HuazhengWang, Ramsey Langley, Sonwoo Kim, Eric McCord-Snook, and Hongn-
ing Wang. 2018. Efficient exploration of gradient space for online learning to
rank. In The 41st International ACM SIGIR Conference on Research & Development
in Information Retrieval. 145–154.

[59] Xuanhui Wang, Michael Bendersky, Donald Metzler, and Marc Najork. 2016.
Learning to rank with selection bias in personal search. In Proceedings of the 39th
International ACM SIGIR conference on Research and Development in Information
Retrieval. 115–124.

[60] Ryen White. 2013. Beliefs and biases in web search. In Proceedings of the 36th
international ACM SIGIR conference on Research and development in information
retrieval. 3–12.

[61] Ryen W White, Ian Ruthven, and Joemon M Jose. 2002. The use of implicit
evidence for relevance feedback in web retrieval. In European Conference on
Information Retrieval. Springer, 93–109.

[62] Tao Yang, Shikai Fang, Shibo Li, Yulan Wang, and Qingyao Ai. 2020. Analysis
of multivariate scoring functions for automatic unbiased learning to rank. In
Proceedings of the 29th ACM International Conference on Information & Knowledge
Management. 2277–2280.

[63] Yisong Yue and Thorsten Joachims. 2009. Interactively optimizing information
retrieval systems as a dueling bandits problem. In Proceedings of the 26th Annual
International Conference on Machine Learning. 1201–1208.

[64] Jianhan Zhu, Jun Wang, Michael Taylor, and Ingemar J Cox. 2009. Risk-aware
information retrieval. In European Conference on Information Retrieval. Springer,
17–28.

https://doi.org/10.1145/3366424.3382705

	Abstract
	1 Introduction
	2 Related work
	3 Problem Formulation
	4 Representing Clicks as Features
	4.1 Click Collection and System Update
	4.2 Unbiased Behavior Feature Extraction
	4.3 Behavior Feature Incorporation

	5 Uncertainty-Aware Learning to Rank
	5.1 Exploration with Upper Confidence Bound
	5.2 Uncertainty Estimation in Ranking

	6 Experiments
	6.1 Experimental setup
	6.2 Results

	7 Conclusion and Future Work
	References

