
Structural Temporal Graph Neural Networks
for Anomaly Detection in Dynamic Graphs

Lei Cai∗
Washington State University
Pullman, Washington, USA

Zhengzhang Chen†
NEC Laboratories America, Inc.
Princeton, New Jersey, USA

Chen Luo
Amazon, Inc.

Palo Alto, California, USA

Jiaping Gui
Stellar Cyber, Inc.

Santa Clara, California, USA

Jingchao Ni
NEC Laboratories America, Inc.
Princeton, New Jersey, USA

Ding Li
Peking University
Beijing, China

Haifeng Chen
NEC Laboratories America, Inc.
Princeton, New Jersey, USA

ABSTRACT
Detecting anomalies in dynamic graphs is a vital task, with numer-
ous practical applications in areas such as security, finance, and
social media. Existing network embedding based methods have
mostly focused on learning good node representations, whereas
largely ignoring the subgraph structural changes related to the
target nodes in a given time window. In this paper, we propose
StrGNN, an end-to-end structural temporal Graph Neural Network
model for detecting anomalous edges in dynamic graphs. In partic-
ular, we first extract the ℎ-hop enclosing subgraph centered on the
target edge and propose a node labeling function to identify the role
of each node in the subgraph. Then, we leverage the graph convolu-
tion operation and Sortpooling layer to extract the fixed-size feature
from each snapshot/timestamp. Based on the extracted features,
we utilize the Gated Recurrent Units to capture the temporal infor-
mation for anomaly detection. We fully implement StrGNN and
deploy it into a real enterprise security system, and it greatly helps
detect advanced threats and optimize the incident response. Exten-
sive experiments on six benchmark datasets also demonstrate the
effectiveness of StrGNN.

CCS CONCEPTS
• Theory of computation → Dynamic graph algorithms; •
Computingmethodologies→Anomaly detection;Neural net-
works; Learning latent representations; • Information sys-
tems → Data mining; • Security and privacy → Intrusion detec-
tion systems.

∗Work done during an internship at NEC Laboratories America.
†Corresponding author: zchen@nec-labs.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00
https://doi.org/10.1145/3459637.3481955

KEYWORDS
anomaly detection; intrusion detection; dynamic graphs; graph em-
bedding; graph neural network; graph structural feature extraction
ACM Reference Format:
Lei Cai, Zhengzhang Chen, Chen Luo, Jiaping Gui, Jingchao Ni, Ding Li,
and Haifeng Chen. 2021. Structural Temporal Graph Neural Networks for
Anomaly Detection in Dynamic Graphs. In Proceedings of the 30th ACM
International Conference on Information and Knowledge Management (CIKM
’21), November 1–5, 2021, Virtual Event, QLD, Australia. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3459637.3481955

1 INTRODUCTION
Recent studies of dynamic graphs/networks have witnessed a grow-
ing interest [9, 11, 13, 52]. Such dynamic graphs model a variety
of systems including societies, ecosystems, the Internet, and oth-
ers [10, 12, 44]. For example, in enterprise dynamic network [8, 33],
the node represents a system entity (such as process, file, and Inter-
net sockets) and an edge indicates the corresponding interaction
between two system entities. These dynamic networks, unlike
static networks, are constantly changing. Possible changes include
graph structure change or modification of node attributes.

A fundamental task on dynamic graph analysis is anomaly de-
tection—identifying objects, relationships, or subgraphs, whose “be-
haviors” significantly deviate from underlying majority of the net-
work [1, 14, 17, 18, 36, 41, 48]. In this work, we focus on the anoma-
lous edge detection in dynamic graphs. Detecting anomalous edges
can help understand the system status and diagnose system fault
[2, 36, 41]. For example, in an enterprise dynamic network, some
system entity pairs, such as a user software and system-specific
internet socket ports (e.g., port number ≤ 1024), never form an
edge (interaction/connection) in-between in normal system envi-
ronments. Once occurring, these suspicious interactions/activities
may indicate some serious cyber-attack happened and could signif-
icantly damage the enterprise system [18, 49].

To detect such anomalous interactions in dynamic graphs, a typ-
ical approach is to build a two-stage model [41]. In the first stage,
data-specific features or low-dimensional representations (such
as scan statistics [39], Eigen equation compression [25], or graph
embedding [52]) are generated by finding the best mapping from dy-
namic graphs to a vector of real numbers. Then, in the second step,

Applied Research Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

3747

https://doi.org/10.1145/3459637.3481955
https://doi.org/10.1145/3459637.3481955

a traditional anomaly detector, such as the support vector machines
and the local outlier factor algorithm, is applied to identify anom-
alies [41]. As can be seen, the key step of the two-stage approach
is to learn effective low-dimensional representations/features from
dynamic graphs.

Recently, graph embedding has shown to be a powerful tool in
learning the low-dimensional representations in networks that can
capture and preserve the graph structure. However, most existing
graph embedding approaches are designed for static graphs, and
thus may not be suitable for a dynamic environment in which the
network representation has to be constantly updated. Only a few
advanced embedding-based methods (such as NetWalk [52]) are
suitable for updating the representation dynamically as the net-
work evolves. These methods first learn the node embeddings to
encode edges. Then, a clustering-based method (such as K-means
clustering [30]) is used to flag anomalous edges. However, similar to
all other two-stage approaches, they cannot be trained end-to-end
because the parameters in the two stages are not learned jointly
and the objective of embedding learning is not designed for the
anomaly detection task. Thus, the learned embedding may not be
distinguishable for detecting the anomalies in dynamic graphs. In
addition, these embedding based methods learn the graph embed-
ding in an incremental way, i.e., using all vertices and edges until
the current timestamp to learn the node embedding. Thus, it can
not capture some temporal dynamics like vertex removal or edge
removal, which often indicates important temporal relationship
changes. For example, one host/machine, which was removed (i.e.,
a vertex removal) from the enterprise network for a long time, sud-
denly starts to connect to some other active hosts. It may indicate
the target host has been compromised and tried to spread Trojan
or other malware.

More importantly, these methods neglect a notable characteristic
of the dynamic networks—the subgraph structural changes related
to the target nodes. These structural temporal dynamics are key
to understanding system behavior. For example, in Figure 1, the
target edge at timestamp 𝑡 is marked as a double red line, and the
1-hop subgraph centered on the target edge is marked with gray. It
can be seen from Figure 1 (A) that the interactions between nodes
of the subgraph (i.e., gray nodes) become more frequent. Therefore,
the target edge in Figure 1 (A) is reasonable to be a normal edge.
In contrast, in Figure 1 (B), there are no interactions between the
neighbors of the subgraph from timestamp 𝑡 − 3 to 𝑡 − 1. Therefore,
the target edge at timestamp 𝑡 is more likely to be an anomalous
edge. Thus, it is critical to model and detect the structural changes
over time for the anomaly detection task.

To address the aforementioned issues, we propose StrGNN, a
structural graph neural network to identify anomalous edges in
dynamic graphs. StrGNN is designed to detect unusual subgraph
structures centered on the target edge in a given time window
while considering the temporal dependency. StrGNN consists of
three sub-models: ESG (Enclosing Subgraph Generation), GSFE
(Graph Structural Feature Extraction), and TDN (Temporal De-
tection Network). First, ESG extracts a ℎ-hop enclosing subgraph
centered on the target edge from each graph snapshot. Subgraphs
extracted based on different edges can result in the same topology
structure. Thus, a node labeling function is proposed to indicate

?

?

T

T

T - 1

T - 1

T - 2

T - 2

T - 3

T - 3

(B)

(A)

Figure 1: An example of structural changes in dynamic
graphs.

the role of each node in the subgraph. Then, GSFE module lever-
ages Graph Convolution Neural Network and pooling technologies
to extract fixed-size feature from each subgraph. Based on the ex-
tracted features,TDN employs the Gated Recurrent Units (GRUs) to
capture the temporal dependency for anomaly detection. Different
from the previous embedding based methods, the whole process
of StrGNN can be trained end-to-end, i.e., StrGNN takes the test
edges along with the original dynamic graphs as input and directly
outputs the category (i.e., anomaly or normal) for each test edge.
Moreover, our proposed StrGNN framework focuses on mining
the structural temporal patterns in a given time window and does
not require to learn node embedding. Therefore, StrGNN is not
sensitive to the edge and vertex changes (such as new nodes) in the
dynamic graphs. We fully implement StrGNN and deploy it into
a enterprise security system, which greatly helps detect advanced
threats, and optimize the incident response. By using StrGNN in
the enterprise security system for four weeks, we can reduce false
positives of the state-of-the-art methods by at least 50% while keep-
ing zero false negatives. We also conduct extensive experiments on
six benchmark datasets to evaluate the performance of StrGNN.
The results show that StrGNN significantly outperforms both net-
work embedding based baselines and traditional graph anomaly
detection based techniques.

The main contribution of the paper has been summarized as
follows:

• Wepropose a novel structural GraphNeural Network StrGNN
to identify anomalous edges in dynamic graphs.

• The proposed StrGNN focuses on detecting subgraph struc-
tural changes centered on the target edge in a given time
window. To distinguish the role of each node in the subgraph,
we propose a node labeling function to annotate the nodes
in the subgraph with different labels. Different from the ex-
isting two-stage embedding based methods, our proposed
method can be trained end-to-end. Therefore, the feature
extraction module can be trained more efficient to capture
the structural variation for anomaly detection.

• We fully develop the detection engine and deploy it into a
real enterprise security system. We also conduct extensive

Applied Research Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

3748

experiments on six benchmark datasets. Experimental results
demonstrate the effectiveness of StrGNN.

The rest of the paper is organized as follows. Section 2 discusses
our proposed structural temporal graph neural network in detail.
Section 3 provides the experiment results. Section 4 discusses the
related work. Finally, Section 5 concludes the paper.

2 METHOD
In this section, we introduce our method in detail. We start with
the overall framework of our proposed Structural Temporal Graph
Neural Networks for anomaly detection in dynamic graphs. The
details of each component in our proposed method are introduced
afterwards.

2.1 Overall Framework
Given a temporal network {𝐺 (𝑡) = {𝑉 (𝑡), 𝐸 (𝑡)}}𝑛

𝑡=1, where 𝐺 (𝑡)
is the graph snapshot at timestamp 𝑡 consisting of vertices 𝑉 (𝑡)
and edges 𝐸 (𝑡). Our goal is to detect the anomalous edges at any
timestamp 𝑡 during the testing stage.

Compared with the anomaly detection in a static graph, dy-
namic graphs are more complex and challenging in two perspec-
tives: (1) The anomalous edges cannot be determined by the graph
from a single timestamp. The detection procedure must take the
previous graphs into consideration; (2) Both the vertex and edge
sets are changing over time. To tackle these challenges, we pro-
pose StrGNN, a structural temporal Graph Neural Network frame-
work. The key idea of our proposed method is to capture structural
changes centered on the target edge in a given time window and
determine the category (i.e., anomaly or normal) of the target edge
based on the structural changes. Our proposed StrGNN framework
consists of three key components: ESG (Enclosing Subgraph Gen-
eration), GSFE (Graph Structural Feature Extraction), and TDN
(Temporal Detection Network), as illustrated in Figure 2.

2.2 ESG: Enclosing Subgraph Generation
For the first module, Enclosing Subgraph Generation, our goal is to
generate enclosing subgraph structure related to the target edge so
as to detect the anomalies more efficiently. Directly employing the
whole graph for analysis can be highly computational expensive,
especially considering the real-world networks with thousands or
even millions of nodes and edges. Recent work [51] also proved
that in Graph Neural Networks, each node is most influenced by its
neighbors. Therefore, in anomalous edge detection tasks, the sub-
graph structure centered on the target edge (or enclosing subgraph)
can be employed to detect anomaly more efficiently both in mem-
ory and computation aspects. We define the enclosing subgraph as
follows:

Definition 1. (Enclosing subgraph in static graphs) For a static
network 𝐺 = (𝑉 , 𝐸), given a target edge 𝑒 with source node 𝑥 and
destination node 𝑦, the ℎ−hop enclosing subgraph 𝐺ℎ𝑥,𝑦 centered
on edge 𝑒 can be obtained by {𝑖 |𝑑 (𝑖, 𝑥) ≤ ℎ ∨ 𝑑 (𝑖, 𝑦) ≤ ℎ}, where
𝑑 (𝑖, 𝑥) is the shortest path distance between node 𝑖 and node 𝑥 .

Definition 2. (Enclosing subgraph in dynamic graphs) For a tem-
poral network {𝐺 (𝑖) = {𝑉 (𝑖), 𝐸 (𝑖)}}𝑡

𝑖=𝑡−𝑤+1 with window size 𝑤 ,
given a target edge 𝑒𝑡 with source node 𝑥𝑡 and destination node

𝑦𝑡 , the ℎ−hop enclosing subgraph 𝐺ℎ
𝑥𝑡 ,𝑦𝑡

centered on edge 𝑒𝑡 is a
collection of all subgraph centered on 𝑒𝑡 in the temporal network
{𝐺 (𝑖)ℎ

𝑥𝑡 ,𝑦𝑡
| (𝑡 −𝑤 + 1) ≤ 𝑖 ≤ 𝑡}.

For a target edge 𝑒𝑡 , we extract the enclosing subgraph in dy-
namic graphs based on Definition 2. However, the extracted sub-
graph only contains topological information. Subgraphs extracted
based on different edges can result in the same topological structure.
To distinguish the role of each node in the subgraph, in this work,
we propose to annotate the nodes in the subgraph with different
labels.

A good node labeling function should convey the following in-
formation: 1) which edge is the target edge in the current subgraph,
and 2) the contribution of each node in identifying the category
of each edge. More specifically, given the edge 𝑒𝑡 and the corre-
sponding source and destination node 𝑥𝑡 and 𝑦𝑡 , we employ the
following node labeling function to label each node 𝑖 in the enclos-
ing subgraph 𝐺 (𝑖)ℎ

𝑥𝑡 ,𝑦𝑡
:

𝑓 (𝑖, 𝑥𝑡 , 𝑦𝑡) = 1 +min(𝑑 (𝑖, 𝑥𝑡), 𝑑 (𝑖, 𝑦𝑡)) (1)
+(𝑑𝑠𝑢𝑚/2) [(𝑑𝑠𝑢𝑚/2) + (𝑑𝑠𝑢𝑚%2) − 1],

where 𝑑 (𝑖, 𝑥𝑡) is the shortest path distance between node 𝑖 and
node 𝑥𝑡 , and 𝑑𝑠𝑢𝑚 = 𝑑 (𝑖, 𝑥𝑡) + 𝑑 (𝑖, 𝑦𝑡).

In addition, the two center nodes are labeled with 1. If a node
𝑖 satisfies 𝑑 (𝑖, 𝑥𝑡) = ∞ or 𝑑 (𝑖, 𝑦𝑡) = ∞, it will be labeled as 0. The
label will be converted into a one-hot vector as the attribute 𝑋
for each node. By employing the node labeling function, we can
generate the label for each node, which can represent structure
information for the given subgraph. The category of the target
edge 𝑒𝑡 at timestamp 𝑡 can be predicted by analyzing the labeled
subgraph in the given time window.

2.3 GSFE: Graph Structural Feature Extraction
To analyze the structure of each enclosing subgraph from the given
time period, the Graph Convolution Neural Network (GCN) [27]
can be employed to project the subgraph into an embedding space.
In GCN, the graph convolution layer was proposed to learn the
embedding of each node in the graph and aggregate the embedding
from its neighbors. The layer-wise forward operation of graph
convolution layer can be described as follows:

𝐺 (𝑋,𝐴) = 𝜎 (𝐷̂−1/2𝐴𝐷̂−1/2𝑋𝑊), (2)

where 𝐴 = 𝐴 + 𝐼 is the summation of the adjacency matrix and
identity matrix, 𝜎 (·) denotes an activation function, such as the
𝑅𝑒𝐿𝑈 (·) = 𝑚𝑎𝑥 (0, ·), and 𝑊 is the trainable weight matrix. By
employing the graph convolution layer, each node can aggregate the
embedding from its neighbors. By stacking the graph convolution
layer in the neural network, each node can obtain more information
from other nodes. For example, each node can obtain information
from its 2-hop neighbors by stacking two graph convolution layers.

GCN can generate node embedding for detecting anomalous
edges in a single graph [7]. However, in our dynamic graph setting,
the anomalies should be determined in the context of {𝐺 (𝑖)ℎ

𝑥𝑡 ,𝑦𝑡
|𝑡 −

𝑤 ≤ 𝑖 ≤ 𝑡}. The number of nodes in different enclosing subgraphs
is commonly different, thus results in different sizes of the feature

Applied Research Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

3749

GRU GRU GRU GRU

Original Dynamic
Graph

ESG: Enclosing
Subgraph Generation

TDN: Temporal
Detection Network Normal/ Anomaly?

?

?

TT - 1T - 2T - 3

GSFE: Graph
Structural Feature

Extraction

Figure 2: Illustration of our proposed StrGNN framework.

vector in different subgraphs. Therefore, it is challenging to ana-
lyze the dynamic graphs using Graph Neural Networks due to the
various sizes of the input.

To tackle this problem, we leverage the graph pooling tech-
nology to extract the fixed-size feature for each enclosing sub-
graph. Any graph pooling method can be employed in our proposed
StrGNN framework to extract the fixed-size feature for further anal-
ysis. In this work, we employ the Sortpooling layer proposed by
[54], which can sort the nodes in the enclosing subgraph based on
their importance and select the feature from the top 𝐾 nodes.

Given the node embedding 𝐻𝑖 corresponding to graph𝐺 (𝑖)ℎ
𝑥𝑡 ,𝑦𝑡

,
the importance score for each node in the Sortpooling layer is
defined as follows:

𝑆 (𝐻𝑖 , 𝐴) = 𝜎 (𝐷̂−1/2𝐴𝐷̂−1/2𝐻𝑖𝑊 1), (3)

where 𝐴 is the adjacency matrix of graph 𝐺 (𝑖)ℎ
𝑥𝑡 ,𝑦𝑡

, and𝑊 1 is the
projection matrix with output channel 1. Each node can obtain the
importance score by using Equation 3. All nodes in the enclosing
subgraph will be sorted in order of the importance score. And
only the top 𝐾 nodes will be selected for further analysis. For the
subgraphs that contain less than 𝐾 nodes, the zero-padding will
be employed to guarantee that each subgraph contains the same
fixed-size feature.

2.4 TDN: Temporal Detection Network
The Graph Structural Feature Extraction module can generate low-
dimensional features for anomaly detection. However, it does not
consider the temporal information, which is of great importance
for determining the category (i.e., anomaly or normal) of an edge
in the dynamic setting.

Given the extracted structural feature {𝐻𝑖 }𝑡𝑖=𝑡−𝑤 , 𝐻𝑖 ∈ 𝑅𝐾×𝑑 ,
where 𝐾 is the number of selected nodes in each graph, and 𝑑 is
the dimension of feature for each node, in this work, we employ
the Gated Recurrent Units (GRUs) [15], which can alleviate the
vanishing and exploding gradient problems [20], to capture the
temporal information as:

𝑧𝑡 = 𝜎 (𝑊𝑧𝐻̂𝑡 +𝑈𝑧ℎ𝑡−1 + 𝑏𝑧) (4)
𝑟𝑡 = 𝜎 (𝑊𝑟 𝐻̂𝑡 +𝑈𝑟ℎ𝑡−1 + 𝑏𝑟) (5)
ℎ
′
𝑡 = tanh(𝑊ℎ𝐻̂𝑡 +𝑈ℎ (𝑟𝑡 ◦ ℎ𝑡−1) + 𝑏ℎ) (6)

ℎ𝑡 = 𝑧𝑡 ◦ ℎ𝑡−1 + (1 − 𝑧𝑡) ◦ ℎ
′
𝑡 , (7)

where ◦ represents the element-wise product operation,𝑊 ,𝑈 , and
𝑏 are parameters. The GRU network takes the feature at each times-
tamp as input, and feeds the output of current timestamp into
the next timestamp. Therefore, the temporal information can be
modeled by the GRU network. The output of last timestamp ℎ𝑡
is employed to analyze the category of the target edge 𝑒𝑡 . The
anomalous edge detection problem can be formulated as follows:

𝐿 = −(𝑦𝑡 log(𝑔(ℎ𝑡)) + (1 − 𝑦𝑡) log(1 − 𝑔(ℎ𝑡))), (8)

where 𝑔(·) is a fully connected network, and 𝑦𝑡 is the category of
edge 𝑒𝑡 .

For the anomaly detection task, in many real-world cases, the
dataset does not contain any anomalous samples or only contain a
small number of anomalous samples.

One straightforward way of generating negative samples is to
draw samples from a “context-independent” noise distribution (such
as Random sampling or injected sampling [2]), where a negative
sample is independent and does not depend on the observed sam-
ples. However, due to the large anomalous edge space, this noise
distribution would be very different from the data distribution,

Applied Research Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

3750

which would lead to poor model learning. Thus, in this work, we
propose “context-dependent” negative sampling strategy.

The intuition behind our strategy is to generate negative samples
from “context-dependent” noise distribution. Here, the “context-
dependent” noise distribution for the sampled data 𝐸 ′ is defined
as: 𝑃𝐸′ ∼ 𝑃 (𝐸) ∗ (1

𝑁 ∗|𝐸 |), where 𝑃 (𝐸) denotes the observed data
distribution, |𝐸 | is the number of edges in the graph, and 𝑁 is
the number of nodes in the graph. Specifically, we first randomly
sample a normal vertex pair 𝑒 = {𝑥𝑎, 𝑥𝑏 } in the graph. Then, we
replace one of the nodes, say 𝑥𝑎 with a randomly sampled node 𝑥 ′
in the graph and form a new negative sample 𝑒 ′ = {𝑥 ′, 𝑥𝑏 }. If 𝑒 ′ is
not belongs to the normal graph, we retain the sample, otherwise,
we delete it.

The overall training procedure is summarized as in Algorithm 1.
The proposed StrGNN framework is quite flexible and easy to be
customized. Any network that can capture the temporal informa-
tion can be used in our proposed framework, such as Convolution
Neural Network (CNN) and Vanilla Recurrent Neural Network
(RNN).

Algorithm 1: StrGNN: Structural Graph Neural Networks
for Anomaly Detection in Dynamic Graphs
Input: {𝐺 (𝑡) = {𝑉 (𝑡), 𝐸 (𝑡)}}𝑛

𝑡=1; The number of hops ℎ;
Window size𝑤 .

1 Generating negative samples from “context-dependent”
noise distribution if necessary;

2 Extract ℎ-hop enclosing subgraphs based on Definition 2;
3 Generate the label for each node in the subgraph using

Equation 1;
4 Extract the graph structure features;
5 Model the temporal information using GRU;
6 Train the detector using Equation 8.

3 EXPERIMENTS
In this section, we evaluate StrGNN on six benchmark datasets
and a real enterprise network.

3.1 Datasets
We conduct experiments on six public datasets from different do-
mains. We construct one graph per timestamp for each dataset. The
statistics of the preprocessed datasets are shown in Table 1. The
UCI Messages dataset [35] is collected from an online community
platform of students at the University of California, Irvine. Each
node in the constructed graph represents a user in the platform.
And the edge indicates that there is a message interaction between
two users. The Digg dataset [16] is collected from a news website
digg.com. Each node represents a user of the website, and each
edge represents a reply between two users. The Email dataset is
a dump of emails of Democratic National Committee. Each node
corresponds to a person. And the edge indicates an email commu-
nication between two persons. The Topology [53] dataset is the
network connections between autonomous systems of the Internet.
Nodes are autonomous systems, and edges are connections between
autonomous systems. The Bitcoin-alpha and Bitcoin-otc [28, 29]

Table 1: Statistics of the datasets in dynamic graph setting.

Dataset #Vertex #Edge #Timestamp
UCI Messages 1,899 13,838 190
Digg 30,360 85,155 16
Email 2,029 3,724 20
Topology 34,761 107,661 21
Bitcoin-alpha 3,783 14,124 63
Bitcoin-otc 5,881 21,492 63

datasets are collected from two Bitcoin platform named Alpha and
OTC, respectively. Nodes represent users from the platform. If one
user rates another user on the platform, there is an edge between
them.

3.2 Baselines
We compare StrGNNwith two traditional graph anomaly detection
based methods and four network embedding based baselines.

• SedanSpot [19]: SedanSpot is a principled randomized al-
gorithm. It uses a holistic random walk based edge anomaly
scoring function to compare an incoming edge with the
whole (sampled) graph.

• CM-Sketch [40]: CM-Sketch is an anomaly detection model
based on global and local structural properties of an edge
stream. It utilizes Count-Min sketch for approximating these
properties.

• Node2Vec [23]: Node2Vec combines breadth-first traversal
and depth-first traversal in the random walks generation
procedure. The embedding is learned using Skip-gram tech-
nology.

• Spectral Clustering [47]: To preserve the local connection
relationship, the spectral embedding generates the node em-
bedding by maximizing the similarity between nodes in the
neighborhood.

• DeepWalk [38]: DeepWalk generates the random walks
with given length starting from a node and learns the em-
bedding using Skip-gram.

• NetWalk [52]: NetWalk generates several random walks for
each vertex and learns a unified embedding for each node us-
ing auto-encoder technology. The embedding representation
will be updated along the time dimension.

For the first three baselines, after representation learning, the
same K-means clustering based method (as in NetWalk [52]) is used
for anomaly detection.

3.3 Experiment Setup
The parameters of StrGNN can be tuned by 5-fold cross-validation
on a rolling basis. Here, by default, we set the window size𝑤 to 5
and the number of hops ℎ in enclosing subgraph to 1. We employ
a Graph Neural Network with three graph convolution layers to
extract graph features. The size of the output feature map is set to 32
for all three layers. The outputs of all three layers are concatenated
as the embedding feature. The selected rate in the Sortpooling layer

Applied Research Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

3751

Table 2: AUC comparison on six benchmark datasets.

Methods UCI Digg Email
1% 5% 10% 1% 5% 10% 1% 5% 10%

SedanSpot 0.7342 0.7156 0.7061 0.6976 0.6784 0.6396 0.7427 0.7362 0.7235
CM-Sketch 0.7320 0.6968 0.6835 0.6884 0.6675 0.6358 0.7053 0.6946 0.6876
Node2Vec 0.7371 0.7433 0.6960 0.7364 0.7081 0.6508 0.7391 0.7284 0.7103
Spectral Clustering 0.6324 0.6104 0.5794 0.5949 0.5823 0.5591 0.8096 0.7857 0.7759
DeepWalk 0.7514 0.7391 0.6979 0.7080 0.6881 0.6396 0.7481 0.7303 0.7197
NetWalk 0.7758 0.7647 0.7226 0.7563 0.7176 0.6837 0.8105 0.8371 0.8305
StrGNN 0.8179 0.8252 0.7959 0.8162 0.8254 0.8272 0.8775 0.9103 0.9080

Methods Bitcoin-Alpha Bitcoin-otc Topology
1% 5% 10% 1% 5% 10% 1% 5% 10%

SedanSpot 0.7380 0.7264 0.7085 0.7346 0.7284 0.7156 0.6873 0.6742 0.6672
CM-Sketch 0.7146 0.7015 0.6887 0.7412 0.7338 0.7242 0.6687 0.6605 0.6558
Node2Vec 0.6910 0.6802 0.6785 0.6951 0.6883 0.6745 0.6821 0.6752 0.6668
Spectral Clustering 0.7401 0.7275 0.7167 0.7624 0.7376 0.7047 0.6685 0.6563 0.6498
DeepWalk 0.6985 0.6874 0.6793 0.7423 0.7356 0.7287 0.6844 0.6793 0.6682
NetWalk 0.8385 0.8357 0.8350 0.7785 0.7694 0.7534 0.8018 0.8066 0.8058
StrGNN 0.8574 0.8667 0.8627 0.9012 0.8775 0.8836 0.8553 0.8352 0.8271

is set to 0.6. In terms of the temporal neural network, the hidden
size of GRU is set to 256. We employ Adam method [26] to train
the network. The learning rate of Adam is set to 1𝑒 − 4. We employ
batch training in the experiments and the batch size is set to 32 for
our proposed StrGNN method. StrGNN is end-to-end trained for
50 epochs. We use the first 50% edges as the training dataset, and
the rest as the test dataset. Due to the challenges in collecting data
with ground-truth anomalies, we use anomaly injection method
to create the anomalous edges [2]. The metric used to compare
the performance of different methods is AUC (the area under the
ROC curve). The higher AUC value indicates the high quality of
the method.

3.4 Results on Benchmark Datasets
We first compare StrGNN with the baseline methods on six bench-
mark datasets with different percentages (i.e., 1%, 5%, and 10% as
indicated in Table 2) of anomalous edges injected. The experimental
results in Table 2 show that StrGNN outperforms all four embed-
ding based baselines on all the benchmark datasets. In particular,
on Bitcoin-otc data, StrGNN has gained more than 10% improve-
ment over all four baseline methods. This is because our proposed
StrGNN method can be trained end-to-end. Therefore, the feature
extraction module can be trained more efficient to capture the struc-
tural variation for anomaly detection. In contrast, the embedding
based baselines are two-stage methods. During the first stage, the
embedding based method is used to generate embedding for each
node in the graph. Thus, the training of embedding does not take
the anomaly detection into consideration. This limits the perfor-
mance of embedding based method. However, most of the network

Table 3: AUC results with different hops of enclosing sub-
graph on UCI Messages.

1% 5% 10%
1-hop enclosing subgraph 0.8179 0.8252 0.7959
2-hop enclosing subgraph 0.8216 0.8274 0.7987
3-hop enclosing subgraph 0.8227 0.8294 0.8005

embedding-based approaches (i.e., Node2Vec, DeepWalk, and Net-
Walk) still outperform the traditional models (i.e., SedanSpot and
CM-Sketch). The results also show that compared with the baseline
methods, StrGNN is less sensitive to the number of injected anom-
alies. And even if 10% anomalies are injected, the performance of
StrGNN is still acceptable.

Table 4: AUC results with different sizes of time window on
UCI Messages.

1% 5% 10%
𝑤 = 3 0.7565 0.634 0.7478
𝑤 = 4 0.7987 0.8048 0.7646
𝑤 = 5 0.8179 0.8252 0.7959
𝑤 = 6 0.8186 0.8218 0.7937
𝑤 = 7 0.8148 0.8197 0.7924
𝑤 = 10 0.8086 0.8136 0.7879

3.4.1 Parameter Sensitivity Analysis. In the experiments, we eval-
uate the influence of each parameter: the number of hops ℎ and
the window size𝑤 , respectively. The AUC results of StrGNN with

Applied Research Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

3752

different ℎ on UCI Messages (with accumulated graph setting) are
shown in Table 3. StrGNN with 2-hop or 3-hop subgraph achieves
similar performance as 1-hop but requiring way more computa-
tional cost. Table 4 shows that StrGNN achieves a slightly better
performance with the parameter 𝑤 = 5, but the overall perfor-
mance haven’t been significantly affected by the window size when
5 ≤ 𝑤 ≤ 10.

50% 55% 60% 65% 70% 75% 80% 85% 90%
Training Percentage

0.78

0.8

0.82

0.84

0.86

0.88

AU
C

Figure 3: Stability over the training percentage of StrGNNon
UCI Messages with 10% anomalies.

We also evaluate our proposed model using training data with
different ratios. The AUC results on UCI Messages are shown in
Figure 3. It can be seen from the results that the AUC increases
with the percentage of training data ranging from 50% to 75%, and
then the performance stays relatively stable.

3.5 Results on Intrusion Detection Application
To evaluate the effectiveness of StrGNN on practical applications
with real anomalies, we apply it to detect malware attacks in the
enterprise environment. We collect a 4-week period of data (with
about ten thousand normal process-level and network-level event
records) from a real enterprise network composed of 109 hosts (87
Windows hosts and 22 Linux hosts).

We also need to prepare the ground truth of “abnormal events” to
evaluate the proposed approach. Unfortunately, in reality, compared
to normal events the intrusion attacks rarely happen. In one single
enterprise network, real attacks happen only several times in a year.
Therefore, we want to make the evaluation as close to real scenarios
as possible. We internally build the “attack testbed”, and randomly
pick a few hosts as targets on which different types of attacks are
injected. In particular, we collaborate with an industrial company
working on commercial enterprise security products. The attacks
were performed by professional hackers hired by the company. We
choose six typical attacks [5, 31] in the following:

Figure 4: Attack testbed example related to the Diversifying
Attack Vectors attack.

(1) Diversifying Attack Vectors. This intrusion scenario is a six-
step attack chain [5], as shown in Figure 4. First, hackers
create malicious php files, download malware binary (tro-
jan.exe), and connect back to them. Then, they run the pro-
cess notepad.
exe to perform DLL injection. Next, they use mimikatz and
kiwi to perform memory operation inside the meterpreter
context. Finally, they copy and run PwDump7.exe andwce.exe
on target hosts.

(2) Emulating Enterprise Environment. This intrusion includes
seven steps. First, attackers generate telnet processes to cre-
ate malware binary, open reverse connection, and download
malware binary (trojan.exe). Then, trojan.exe is created to
connect back to hackers, and DLL is injected through the
running process notepad.exe. The hackers use mimikatz and
kiwi for memory operation inside the meterpreter context.
Finally, malware PwDump7.exe and wce.exe are copied and
run on target hosts.

(3) Domain Controller Penetration. In this five-step attack chain,
the hackers first send an email attaching a document that
includes the malware python32.exe. This malware opens a
connection back to hackers so that they can run notepad.exe
and perform reflective DLL injection to obtain needed privi-
leges. Then, they transfer password enumerator and run the
process gsecdump-v2b5.exe to get all user credentials. Finally,
they probe the SQL server address and dump the database
into their own bases.

(4) MLS Attack (MLS): This attack targets at the /selinux/mls
file, which defines the Multi-Level Security(MLS) classifica-
tion of files within the host. In general, the /selinux/mls file
should be kept secret to all users except for security admin-
istrator, as it exposes security rules of a computer system
and enables attackers to find potential vulnerabilities. By
the intrusion attack, attackers first exploit the ssh process
to access /selinux/mls file. If the file access is successful, file
content is sent to attacker’s hosts.

Applied Research Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

3753

(5) Snowden Attack (SNO): This attack targets at the /etc/passwd
file, which stores the password digest of all users as well
as user group information. First, the attacker tries to access
/etc/passwd file by gvfs process, which enables easy access
from a remote host via FTP. Then the attacker tries to send
the file via an INETSocket.

(6) Botnet Attack (BOT): In this attack, the remote intruder em-
ploys the bash process to scan a sensitive file /var/log/apt/histo-
ry.log. This file stores detailed installation messages. Attack-
ers are interested in it as they can exploit the vulnerabilities
of installed softwares. The sensitive information is leaked
via an INETSocket.

Table 5: Results on intrusion detection.

Method AUC
SedanSpot 0.76
CM-Sketch 0.68
Node2Vec 0.71
Spectral Clustering 0.65
DeepWalk 0.76
Netwalk 0.90
StrGNN 0.99

We consider all events within the first three weeks as the “long-
term normalities”. Then, the malicious events by the hackers exe-
cuted during different periods of the fourth week. In total, there are
82 attack records by executing different types of attacks including
ATP attacks, Trojan attacks, and Puishing Email attacks. Based on
the enterprise network event data, we construct an accumulated
graph per day with nodes representing hosts and edges represent-
ing the network connection relationships. Based on the constructed
graphs, we apply StrGNN and the baseline methods to detect the
attacks.

The AUC results are shown in Table 5. We can see that StrGNN
achieves an increase of 9% − 34% in AUC over the six baseline
methods. Based on the experimental results, we also find that with
the optimal hyperparameter setting, StrGNN can capture all 82 true
alerts, while the baseline methods can only capture 72 true alerts
at most. Meanwhile, StrGNN only generates 164 false positives
while the baseline methods generate at least 335 false positives.
The results demonstrate the effectiveness of StrGNN in solving
real-world anomaly detection tasks.

4 RELATEDWORK
In this section, we briefly introduce previous work on anomaly
detection, especially on embedding based anomaly detection for
graphs.

4.1 Anomaly Detection
Many traditional machine learning methods have been proposed
to tackle anomaly detection tasks [6, 24]. One-class SVM [43] was
proposed to learn the boundary of normal samples, and detect the
anomaly based on the learned boundary. Due to the computation
cost, it takes more time on the large scale dataset. Robust covari-
ance [37] fits the data with a pre-defined distribution, and detect

the anomaly by computing the distance between the sample and
estimated distribution. Isolation forest [32] was proposed to isolate
and detect the anomaly. Local outliers detection [4] estimates the
density of a given dataset and detects the anomaly. When the fea-
ture space of a given dataset can represent the relationship between
samples, the density-based method is efficient to detect the anomaly.
Only recently, the deep neural network based one-class classifier
(Deep SVDD) is proposed by Ruff et al. [42]. Inspired by SVDD [46],
the authors designed a novel one-class classification objective that
has very nice theoretical properties and can effectively train CNNs
for image anomaly detection tasks. Unlike Deep SVDD and SVDD
that mainly focus on dense data such as images, OC4Seq [50], a
multi-scale one-class recurrent neural network, was proposed for
detecting anomalies in discrete event sequences.

Anomaly detection is more challenging in graph setting due
to the complexity of the data. In recent years, there have been
increasing interests in learning the network embedding of the graph,
which can further be employed to detect anomaly combing with
the tradition anomaly detection methods.

4.2 Anomaly Detection on Static Graphs
Inspired by word embedding methods [3, 34] in natural language
processing tasks, recent advances such as DeepWalk [38], LINE [45],
and Node2Vec [23] have been proposed to learn node embedding
via the skip-gram technology. The DeepWalk generates random
walks for each vertex with a given length and picks the next step
uniformly from the neighbors. The skip-gram is employed to learn
the embedding from the node sequence. To preserve the local con-
nection relationship, the spectral embedding generates the node
embedding by maximizing the similarity between neighborhood
nodes. Different from DeepWalk, the LINE [45] preserves not only
the first-order (observed tie strength) relations but also the second-
order proximities (shared neighborhood structures of the vertices).
Node2Vec [23] uses two different sampling strategies (breadth-first
sampling and depth-first sampling) for vertices that result in dif-
ferent feature representations. Through the network embedding
technology, both anomalous node and edge detection tasks can be
performed with traditional anomaly detection methods.

4.3 Anomaly Detection on Dynamic Graphs
Dynamic graphs are more complex due to the variation of the graph
structure. That is, the vertices and edges are changing along the
time dimension. Network embedding methods such as DeepWalk,
LINE, NODE2VEC can only learn the embedding on a given graph.
When dealing with a series of graphs, these methods cannot cap-
ture the dependency across different graphs/snapshots. To capture
the dependency between different graphs along the time dimen-
sion, recently few network embedding based methods have been
proposed [55]. Dyngem [22] employs the auto-encoder method to
learn the embedding for each graph, and a constraint loss function
is employed to minimize the difference between all graphs. Dyn-
graph2vec [21] uses the Recurrent Neural Network to capture the
temporal information and learn the embedding using auto-encoder
technology. Recently, NetWalk [52], one of the state-of-the-artmeth-
ods for anomaly detection in dynamic networks, is proposed to
learn the embedding while considering the temporal dependency

Applied Research Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

3754

and detect the anomaly using the clustering-based method. The
NetWalk generates several randomwalks for each vertex and learns
a unified embedding for each node using auto-encoder technology.
The embedding representation is updated along the time dimension.

5 CONCLUSION
In this paper, we investigated an important and challenging problem
of anomaly detection in dynamic graphs. Different from network
embedding based methods that focus on learning good node rep-
resentations, we proposed StrGNN, a structural temporal Graph
Neural Network to detect anomalous edges by mining the unusual
temporal subgraph structures. StrGNN can be trained end-to-end
and it is not sensitive to the percentage of anomalies. We implement
and deploy our approach to a real enterprise security system, and
evaluate the proposed algorithm for intrusion detection tasks. Our
method achieved superior detection performance with zero false
negatives. We also evaluated the proposed framework using ex-
tensive experiments on six benchmark datasets. The experimental
results convince us of the effectiveness of our approach.

REFERENCES
[1] Charu C. Aggarwal, Yuchen Zhao, and Philip S. Yu. 2011. Outlier Detection in

Graph Streams. In Proceedings of the 2011 IEEE 27th International Conference on
Data Engineering. USA, 399–409.

[2] Leman Akoglu, Hanghang Tong, and Danai Koutra. 2015. Graph based anomaly
detection and description: a survey. Data Mining and Knowledge Discovery 29, 3
(2015), 626–688.

[3] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A
Neural Probabilistic Language Model. Journal of Machine Learning Research 3,
Feb (2003), 1137–1155.

[4] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. 2000.
LOF: Identifying Density-based Local Outliers. In SIGMOD, Vol. 29. ACM, 93–104.

[5] Cheng Cao, Zhengzhang Chen, and et al. 2018. Behavior-based Community
Detection: Application to Host Assessment In Enterprise Information Networks.
In Proceedings of the 27th ACM International Conference on Information and
Knowledge Management. 1977–1985.

[6] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly Detection:
A Survey. ACM Comput. Surv. 41, 3, Article 15 (July 2009), 58 pages. https:
//doi.org/10.1145/1541880.1541882

[7] Anshika Chaudhary, Himangi Mittal, and Anuja Arora. 2019. Anomaly Detec-
tion using Graph Neural Networks. In 2019 International Conference on Machine
Learning, Big Data, Cloud and Parallel Computing (COMITCon). 346–350.

[8] Ting Chen, L. Tang, Yizhou Sun, Zhengzhang Chen, Haifeng Chen, and G. Jiang.
2016. Integrating Community and Role Detection in Information Networks. In
SDM.

[9] Zhengzhang Chen. 2012. Discovery of Informative and Predictive Patterns in
Dynamic Networks of Complex Systems. Ph.D. Dissertation.

[10] Zhengzhang Chen, William Hendrix, Hang Guan, Isaac K. Tetteh, Alok N. Choud-
hary, Fredrick H. M. Semazzi, and Nagiza F. Samatova. 2013. Discovery of extreme
events-related communities in contrasting groups of physical system networks.
Data Min. Knowl. Discov. 27, 2 (2013), 225–258.

[11] Zhengzhang Chen, William Hendrix, and Nagiza F. Samatova. 2012. Community-
Based Anomaly Detection in Evolutionary Networks. J. Intell. Inf. Syst. 39, 1
(2012), 59–85.

[12] Zhengzhang Chen, Kanchana Padmanabhan, Andrea M. Rocha, Yekaterina Sh-
panskaya, James Mihelcic, Kathleen Scott, and Nagiza F. Samatova. 2012. SPICE:
Discovery of Phenotype-determining Component Interplays. BMC Syst Biol 6, 1
(2012), 40.

[13] Zhengzhang Chen, Kevin A. Wilson, Ye Jin, William Hendrix, and Nagiza F.
Samatova. 2010. Detecting and Tracking Community Dynamics in Evolutionary
Networks. In 2010 IEEE International Conference on Data Mining Workshops. 318–
327.

[14] Wei Cheng, Kai Zhang, Haifeng Chen, Guofei Jiang, Zhengzhang Chen, and Wei
Wang. 2016. Ranking causal anomalies via temporal and dynamical analysis on
vanishing correlations. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 805–814.

[15] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 (2014).

[16] Munmun De Choudhury, Hari Sundaram, Ajita John, and Dorée Duncan Selig-
mann. 2009. Social synchrony: Predicting mimicry of user actions in online social
media. In 2009 International Conference on Computational Science and Engineering,
Vol. 4. IEEE, 151–158.

[17] Boxiang Dong, Zhengzhang Chen, Lu-An Tang, Haifeng Chen, Hui Wang, Kai
Zhang, Ying Lin, and Zhichun Li. 2021. Anomalous Event Sequence Detection.
IEEE Intelligent Systems 36, 3 (2021), 5–13. https://doi.org/10.1109/MIS.2020.
3041174

[18] Boxiang Dong, Zhengzhang Chen, Hui (Wendy) Wang, Lu-An Tang, Kai Zhang,
Ying Lin, Zhichun Li, and Haifeng Chen. 2017. Efficient Discovery of Abnormal
Event Sequences in Enterprise Security Systems. In CIKM.

[19] Dhivya Eswaran and Christos Faloutsos. 2018. SedanSpot: Detecting Anomalies
in Edge Streams. In IEEE International Conference on Data Mining, ICDM 2018,
Singapore, November 17-20, 2018. 953–958.

[20] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT
press.

[21] Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. 2019. dyngraph2vec:
Capturing Network Dynamics Using Dynamic Graph Representation Learning.
Knowledge-Based Systems (2019).

[22] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. 2018. Dyngem: Deep Em-
bedding Method for Dynamic Graphs. arXiv preprint arXiv:1805.11273 (2018).

[23] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 855–864.

[24] Manish Gupta, Jing Gao, Charu C. Aggarwal, and Jiawei Han. 2014. Outlier
Detection for Temporal Data: A Survey. IEEE Trans. Knowl. Data Eng. 26, 9 (2014),
2250–2267. http://dblp.uni-trier.de/db/journals/tkde/tkde26.html#GuptaGAH14

[25] Shunsuke Hirose, Kenji Yamanishi, Takayuki Nakata, and Ryohei Fujimaki. 2009.
Network Anomaly Detection Based on Eigen Equation Compression. In Proceed-
ings of the 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD ’09). 1185–1194.

[26] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[27] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[28] Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, and
VS Subrahmanian. 2018. Rev2: Fraudulent user prediction in rating platforms.
In Proceedings of the Eleventh ACM International Conference on Web Search and
Data Mining. ACM, 333–341.

[29] Srijan Kumar, Francesca Spezzano, VS Subrahmanian, and Christos Faloutsos.
2016. Edge weight prediction in weighted signed networks. In 2016 IEEE 16th
International Conference on Data Mining. IEEE, 221–230.

[30] Aristidis Likas, Nikos Vlassis, and Jakob J Verbeek. 2003. The global k-means
clustering algorithm. Pattern recognition 36, 2 (2003), 451–461.

[31] Ying Lin, Zhengzhang Chen, Cheng Cao, Lu-An Tang, Kai Zhang, Wei Cheng,
and Zhichun Li. 2018. Collaborative Alert Ranking for Anomaly Detection. In
CIKM.

[32] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation Forest. In 2008
Eighth IEEE International Conference on Data Mining. IEEE, 413–422.

[33] Chen Luo, Zhengzhang Chen, Lu-An Tang, Anshumali Shrivastava, Zhichun
Li, Haifeng Chen, and Jieping Ye. 2018. TINET: Learning invariant networks
via knowledge transfer. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. ACM, 1890–1899.

[34] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in Neural Information Processing Systems. 3111–3119.

[35] Tore Opsahl and Pietro Panzarasa. 2009. Clustering in Weighted Networks. Social
Networks 31, 2 (2009), 155–163.

[36] Kanchana Padmanabhan, Zhengzhang Chen, Sriram Lakshminarasimhan, Sid-
darth Shankar Ramaswamy, and Bryan Thomas Richardson. 2013. Graph-based
anomaly detection. Practical Graph Mining with R (2013) (2013).

[37] Daniel Peña and Francisco J Prieto. 2001. Multivariate Outlier Detection and
Robust Covariance Matrix Estimation. Technometrics 43, 3 (2001), 286–310.

[38] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online Learn-
ing of Social Representations. In Proceedings of the 20th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. ACM, 701–710.

[39] Carey E. Priebe, John M. Conroy, David J. Marchette, and Youngser Park. 2005.
Scan Statistics on Enron Graphs. Computational & Mathematical Organization
Theory 11, 3 (01 Oct 2005), 229–247.

[40] Stephen Ranshous, S. Harenberg, K. Sharma, and N. Samatova. 2016. A Scalable
Approach for Outlier Detection in Edge Streams Using Sketch-based Approxima-
tions. In SDM.

[41] Stephen Ranshous, Shitian Shen, Danai Koutra, Steve Harenberg, Christos Falout-
sos, and Nagiza F. Samatova. 2015. Anomaly Detection in Dynamic Networks: A
Survey. WIREs Comput. Stat. 7, 3 (May 2015), 223–247.

[42] Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed
Siddiqui, Alexander Binder, Emmanuel Müller, and Marius Kloft. 2018. Deep one-
class classification. In International Conference on Machine Learning. 4393–4402.

Applied Research Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

3755

https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1109/MIS.2020.3041174
https://doi.org/10.1109/MIS.2020.3041174
http://dblp.uni-trier.de/db/journals/tkde/tkde26.html#GuptaGAH14

[43] Bernhard Schölkopf, Robert C Williamson, Alex J Smola, John Shawe-Taylor, and
John C Platt. 2000. Support Vector Method for Novelty Detection. In Advances in
Neural Information Processing systems. 582–588.

[44] Huseyin Sencan, Zhengzhang Chen, William Hendrix, Tatdow Pansombut,
Fredrick H. M. Semazzi, Alok N. Choudhary, Vipin Kumar, Anatoli V. Melechko,
and Nagiza F. Samatova. 2011. Classification of Emerging Extreme Event Tracks
in Multivariate Spatio-Temporal Physical Systems Using Dynamic Network Struc-
tures: Application to Hurricane Track Prediction. In IJCAI 2011, Proceedings of the
22nd International Joint Conference on Artificial Intelligence, Barcelona, Catalonia,
Spain, July 16-22, 2011. 1478–1484.

[45] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale Information Network Embedding. In Proceedings of the
24th International Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 1067–1077.

[46] David MJ Tax and Robert PW Duin. 2004. Support vector data description.
Machine Learning 54, 1 (2004), 45–66.

[47] Ulrike von Luxburg. 2007. A Tutorial on Spectral Clustering. CoRR abs/0711.0189
(2007). http://arxiv.org/abs/0711.0189

[48] Shen Wang, Zhengzhang Chen, Ding Li, Zhichun Li, Lu-An Tang, Jingchao Ni,
Junghwan Rhee, Haifeng Chen, and S. Philip Yu. 2019. Attentional Heterogeneous
Graph Neural Network: Application to Program Reidentification. In SDM.

[49] Shen Wang, Zhengzhang Chen, Xiao Yu, Ding Li, Jingchao Ni, Lu-An Tang,
Jiaping Gui, Zhichun Li, Haifeng Chen, and S. Philip Yu. 2019. Heterogeneous

Graph Matching Networks for Unknown Malware Detection. In IJCAI.
[50] Zhiwei Wang, Zhengzhang Chen, Jingchao Ni, Hui Liu, Haifeng Chen, and Jiliang

Tang. 2021. Multi-Scale One-Class Recurrent Neural Networks for Discrete Event
Sequence Anomaly Detection. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining (Virtual Event, Singapore) (KDD ’21).
3726–3734.

[51] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation Learning on Graphs
with Jumping Knowledge Networks. In International Conference on Machine
Learning. 5449–5458.

[52] Wenchao Yu, Wei Cheng, Charu C Aggarwal, Kai Zhang, Haifeng Chen, and Wei
Wang. 2018. Netwalk: A Flexible Deep Embedding Approach for Anomaly Detec-
tion in Dynamic Networks. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. ACM, 2672–2681.

[53] Beichuan Zhang, Raymond Liu, Daniel Massey, and Lixia Zhang. 2005. Collecting
the Internet AS-level topology. ACM SIGCOMMComputer Communication Review
35, 1 (2005), 53–61.

[54] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An end-
to-end deep learning architecture for graph classification. In Thirty-Second AAAI
Conference on Artificial Intelligence.

[55] Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. 2018. Dynamic
Network embedding by Modeling Triadic Closure Process. In Thirty-Second AAAI
Conference on Artificial Intelligence.

Applied Research Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

3756

http://arxiv.org/abs/0711.0189

	Abstract
	1 Introduction
	2 Method
	2.1 Overall Framework
	2.2 ESG: Enclosing Subgraph Generation
	2.3 GSFE: Graph Structural Feature Extraction
	2.4 TDN: Temporal Detection Network

	3 Experiments
	3.1 Datasets
	3.2 Baselines
	3.3 Experiment Setup
	3.4 Results on Benchmark Datasets
	3.5 Results on Intrusion Detection Application

	4 Related Work
	4.1 Anomaly Detection
	4.2 Anomaly Detection on Static Graphs
	4.3 Anomaly Detection on Dynamic Graphs

	5 Conclusion
	References

