
SSH (Sketch, Shingle, & Hash) for Indexing Massive-Scale
Time Series

Chen Luo cl67@rice.edu
Department of Computer Science
Rice University
Houston, TX, USA

Anshumali Shrivastava anshumali@rice.edu

Department of Computer Science

Rice University

Houston, TX, USA

Editor: Oren Anava, Marco Cuturi, Azadeh Khaleghi, Vitaly Kuznetsov, Alexander Rakhlin

Abstract

Similarity search on time series is a frequent operation in large-scale data-driven applica-
tions. Sophisticated similarity measures are standard for time series matching, as they are
usually misaligned. Dynamic Time Warping or DTW is the most widely used similarity
measure for time series because it combines alignment and matching at the same time.
However, the alignment makes DTW slow. To speed up the expensive similarity search
with DTW, branch and bound based pruning strategies are adopted. However, branch and
bound based pruning are only useful for very short queries (low dimensional time series),
and the bounds are quite weak for longer queries. Due to the loose bounds branch and
bound pruning strategy boils down to a brute-force search.

To circumvent this issue, we design SSH (Sketch, Shingle, & Hashing), an efficient and
approximate hashing scheme which is much faster than the state-of-the-art branch and
bound searching technique: the UCR suite. SSH uses a novel combination of sketching,
shingling and hashing techniques to produce (probabilistic) indexes which align (near per-
fectly) with DTW similarity measure. The generated indexes are then used to create hash
buckets for sub-linear search. Our results show that SSH is very effective for longer time
sequence and prunes around 95% candidates, leading to the massive speedup in search
with DTW. Empirical results on two large-scale benchmark time series data show that our
proposed method can be around 20 times faster than the state-of-the-art package (UCR
suite) without any significant loss in accuracy.

1. Introduction

Mining for similar or co-related time series is ubiquitous, and one of the most frequent oper-
ations, in data driven applications including robotics,medicine (Oates et al., 2000; Caraça-
Valente and López-Chavarŕıas, 2000), speech (Rabiner and Juang, 1993), object detection
(Yang et al., 2002; Sonka et al., 2014), High Performance Computing (HPC) and system
failure diagnosis (Luo et al., 2014a; Sun et al., 2014), earth science (Mudelsee, 2013), finance
(Granger and Newbold, 2014), and retrieval (Rao et al., 2016; Luo et al., 2014b) etc.

The focus of this paper is on the problem of similarity search with time series data.
A time series X is defined as a sequence of values X = {x1, x2, ..., xm} associated with
timestamps:{t(x1), t(x2), ..., t(xm)} that typically satisfy the relationship t(xi) = t(xi−1)+τ ,
where τ is the sampling interval and m is the number of points in the time series. Formally,

1

given a dataset D = {Xi|1 ≤ i ≤ N} and a query time series Q, we are interested in
efficiently computing

X∗ = arg max
X∈D

S(Q,X),

where S(X,Y) is some similarity of interest between time series X and Y . This problem
is generally prohibitively expensive for large-scale datasets, especially for latency critical
application. We shall concentrate on the computational requirement of this problem.

Finding the right similarity measure for time series is a well-studied problem (Rakthan-
manon et al., 2012), and the choice of this measure is dependent on the application. It is
further well known that while matching time series, it is imperative, for most applications,
to first align them before computing the similarity score. Dynamic time warping or DTW
is widely accepted as the best similarity measure (or the default measure) over time series,
as pointed out in (Rakthanmanon et al., 2012). DTW, unlike L1 or L2 distances, takes into
account the relative alignment of the time series (see Section A.1 for details). However,
since alignment is computationally expensive, DTW is known to be slow (Rakthanmanon
et al., 2012; Keogh and Ratanamahatana, 2005).

Owing to the significance of the problem there are flurry of works which try to make
similarity search with DTW efficient. The popular line of work use the branch-and-bound
technique (Ding et al., 2008; Kim et al., 2001; Keogh et al., 2009). Branch and bound meth-
ods use bounding strategies to prune less promising candidates early, leading to savings in
computations. A notable among them is the recently proposed UCR suite (Rakthanmanon
et al., 2012). The UCR suite showed that carefully combining different branch-and-bound
ideas leads to a significantly faster algorithm for searching. They showed some very impres-
sive speedups, especially when the query time series is small. UCR suite is currently the
fastest package for searching with DTW measure, and it will serve as our primary baseline.

Branch and bounds techniques prune down candidates significantly while dealing with
small queries (small subsequence search). For short queries, a cheap lower bound is sufficient
to prune the search space significantly leading to impressive speedups. However, when the
query length grows, which is usually the case, the bounds are very loose, and they do not
result in any effective pruning. Our empirical finding suggests that existing branch-and-
bound leads to almost no pruning (less than 1%, see Section 2) when querying with longer
time series, making the UCR suite expensive. Branch-and-bound techniques, in general,
do not scale well when dealing with long time series. Nevertheless, it should be noted that
branch and bound techniques give exact answers. It appears that if we want to solve the
search problem exactly, just like classical near neighbor search, there is less hope to improve
the UCR suite. We will discuss this in details in Section 2.

Indexing algorithms based on hashing are well studied for reducing the query complexity
of high-dimensional similarity search (Shrivastava and Li, 2015, 2014b). Hashing techniques
are broadly divided into two categories: 1) Data Independent Hashing (Shrivastava and Li,
2014b, 2015) and 2) Learning-based (Data Dependent) Hashing (Zhang et al., 2011, 2010).

To the best of our knowledge, there is only one recent hashing algorithm tailored for the
DTW measure: (Kale et al., 2014). This algorithm falls into the category of learning-based
hashing. Here, the authors demonstrated the benefit of kernel-based hashing (Learning-
based) scheme (Kulis and Grauman, 2009) for DTW measure on medium scale datasets
(60k time series or less). However, the computation of that algorithm scales poorly O(n2)

2

where n is the number of time series. This poor scaling is due to the kernel matrix (n× n)
and its decomposition which is not suitable for large-scale datasets like the ones used in
this paper with around 20 million time series.

In addition, the method in (Kale et al., 2014), as a learning based hashing, requires an
expensive optimization to learn the hash functions on data samples followed by hash table
construction. Any change in data distribution needs to re-optimize the hash function and
repopulate the hash tables from scratch. This static nature of learning-based hashing is
prohibitive in current big-data processing systems where drift and volatility are frequent.
Furthermore, the optimization itself requires quadratic O(n2) memory and computations,
making them infeasible to train on large datasets (such as the one used in this paper where
n runs into millions).

In contrast, data independent hashing enjoys some of the unique advantages over learning-
based hashing techniques. Data independent hashing techniques derive from the rich theory
of Locality Sensitive Hashing (LSH) (Gionis et al., 1999) and are free from all the com-
putational burden. Furthermore, they are ideal for high-speed data mining in a volatile
environment because drift in distribution does not require any change in the algorithms
and the data structures can be updated dynamically. Owing to these unique advantages
data independent hashing is a heavily adopted routines in commercial search engines.

However, data independent methodologies for time series are limited to vector based
distance measures such as Lp (Datar et al., 2004; Agrawal et al., 1993) or cosine similar-
ity. As argued before, vector based distances are not suitable for time series similarity.
Unfortunately, there is no known data independent hashing scheme tailored for the DTW
measure. Lack of any such scheme makes hashing methods less attractive for time series
mining, particularly when alignments are critical. A major hurdle is to design an indexing
mechanism which is immune to misalignments. In particular, the hashes should be invari-
ant to spurious transformations on time series such as shifting. In this work, we provide a
data independent hashing scheme which respects alignments, and our empirical results show
that it correlates near perfectly with the desired DTW measure. The focus of this paper
will be on data-independent hashing schemes which scale favorably and cater the needs of
frequently changing modern data distributions.

Our Contributions: We take the route of randomized hashing based indexing to prune
the candidates more efficiently compared to branch-and-bound methods. We propose the
first data-independent Hashing Algorithm for Time Series: SSH (Sketch, Shingle, & Hash).
Indexing using SSH can be around 20x faster than the current fastest package for searching
time series with DTW, UCR suite (Rakthanmanon et al., 2012). Our proposal is a novel
hashing scheme which, unlike existing schemes, does both the alignment and matching at
the same time. Our proposal keeps a sliding window of random filters to extract noisy local
bit-profiles (sketches) from the time series. Higher order shingles (or n-grams with large n
like 15 or more) from these bit-profiles are used to construct a weighted set which is finally
indexed using standard weighted minwise hashing which is a standard locality sensitive
hashing (LSH) scheme for weighted sets.

Our experiments show that the ranking under SSH aligns near perfectly with the DTW
ranking. With SSH based indexing we can obtain more than 90% pruning even with long
queries where branch-and-bound fails to prune more than 7%. Our proposed method is
simple to implement and generates indexes (or hashes) in one pass over the time series

3

Table 1: Percentage of candidates that pruned by UCR Suite on ECG Data set and Random
Walk Data set. With the increasing length, the ability of lower bounds used by UCR Suite
to prune candidates deteriorate as the bounds suffer from the curse of dimensionality.

Time Series Length 128 512 1024 2048

UCR Suite Pruned (ECG) 99.7% 94.96% 18.70% 7.76%
UCR Suite Pruned (Random Walk) 98.6% 14.11% 30.2% 3.5%

vector. Experimental results on two large datasets, with more than 20 million time series,
demonstrate that our method is significantly (around 20 times) faster than the state-of-the-
art package without any noticeable loss in the accuracy.

Organization: In Section 2 we discuss why pruning strategies can not work well when
dealing with long queries. We then describe our approach in Section 3. Section 4 presents
our experimental results. We defer the background of our work to Appendix A. We have
summarization the algorithms for better readability in an algorithmic environment in Ap-
pendix B. A detailed description of parameter tuning and its effects are in Appendix 3.

2. Longer Subsequences and Issues with Branch and Bound

Branch and bound strategies are used for reducing the searching cost by pruning off bad
candidates early. The core idea behind branch and bound is to keep a cheap-to-compute
lower bound on the DTW distance. For a given query, if the lower bound of the current
candidate exceeds the best seen DTW then we ignore this candidate safely, simply using
cheap lower bounds. This strategy eliminates the need for computing the costly DTW.

UCR Suite (Rakthanmanon et al., 2012) combines several branch and bound strategies
and makes time series searching process very fast. Three main branch and bound strategies
are used in UCR Suite (Rakthanmanon et al., 2012): LBKim (Kim et al., 2001) lower bound,
LBKeogh lower bound, and LBKeogh2 lower bound (Keogh et al., 2009). LBKim uses the
distance between the First (Last) pair of points from Candidate time series and the Query
time series as the lower bound. The complexity of calculating LBKim is O(1). LBKeogh
and LBKeogh2 (Keogh et al., 2009) uses the Euclidean distance.

The complexity of this lower bound is O(n), where n is the time series length. These
three branching and bounds strategies can prune bad candidates in O(1) (or O(n)) time
which is a saving over computing the DTW distance (O(n2) time).

However, the lower bound gets weaker with the increase in the length of the time series,
due to the curse of dimensionality. This weakening of bounds with dimensionality makes
branch-and-bound ideas ineffective. We demonstrate this phenomenon empirically on two
large-scale datasets (also used in our experiment see Section 4). Table.1 shows the per-
centage of candidates that are pruned by the three lower bounding strategies as well as the
UCR Suite which combines all the three.

The code of this experiment are taken from the UCR Suite package 1, which is publicly
available. This implementation of UCR Suite uses three pruning lower bound: LBKim (Kim
et al., 2001) lower bound, LBKeogh lower bound, and LBKeogh2 lower bound (Keogh et al.,
2009). For each time series, this UCR Suite package compares all the three lower bound for
each time series and uses the lowest one to do pruning.

From Table.1 we can see that when the time series is short (e.g. 128), the pruning
strategies performs quite well (98% to 99% of the time series pruned). However, when

4

Figure 1: For each time series X, we convolve it with a sliding window (red dash box), with
shift δ, of random gaussian filter r and generate a bit depending on the sign of the inner
product. After the complete slide, the process generate a binary string (sketch) BX which
captures the pattern in the time series.

…...

……

…… ……

+1

-1
…

0.
)(

i

sXr

0.
)(

i

sXr

),...,,(21 mxxxX)(i

sX
)1(

sX

r
)0(

sX

),....,,(
)()2()1(BN

XXXX BBBB

)(i

XB

)(i

sX

…

+1 -1 +1 +1 -1 +1 +1 +1 ……

the time series length is around 1000 or more, then all the three criteria are completely
ineffective (only 3% to 7% of the time series pruned), and the search boils down to nearly
brute force. We observe the same trend on both the datasets as evident from Table. 1.

Intuitively, as the length of the query time series increases, the number of possible
good alignments (or warping) also increases. A myopic O(n) lower bound is, therefore, not
effective to eliminate all the possibilities.

3. Our Proposal: SSH (Sketch, Shingle & Hash)

SSH (Sketch, Shingle & Hash): We propose a new hashing scheme, for time series, such
that hash collisions are “active” indicator of high similarity while ignoring misalignments if
any. Our hashing scheme consists of the following stages:

1. Sliding Window Bit-profile (Sketch) Extraction: We use sliding window of
random filter to generate a binary string BX (sketch) of the given time series X.

2. Shingle(n-grams) Generation: We generate higher order shingles from the bit
string BX . This process generates a weighted set SX of shingles.

3. Weighted MinHash Computation: Our final hash value is simply the weighted
minwise hashes of SX , which we use as our indexes for time series.

Next, we go over each of the three steps in detail.

3.1 Sliding Window Bit-profile Extraction

We have a successful set of methodologies based on shingling (Leskovec et al., 2014) to deal
with massive-scale discrete sequential data such as text or strings. However, time series data
contains continuous values making shingling based approaches inapplicable. Furthermore,
variations in sampling intervals, frequency, and alignments make the problem worse.

Our first step solves all this problem by converting time series with continuous values to
discrete sequential objects which can be handled using shingling later. We use the idea of
sketching time series with a sliding window of random filters (Indyk et al., 2000), which was
shown to capture trends effectively. In particular, we produce a bit string (sketch) from the
time series. Each bit in this string captures crude information of some small subsequence.

To generate local bit-profile, we use a randomly generated filter which is a small vector
r, of appropriately chosen size W , as shown in Figure 1. This filter slides over the time
series with an appropriately selected step size δ. During each slide, the filter r is multiplied

5

Figure 2: (a) Shingle(n-grams) Generation: Give the bit string sketch generated from step-
1, we treat it as string and generate n-grams shingles. The shingling process outputs a
weighted set. (b) SSH Illustration on two different time series: Two different time
series X and Y has same pattern (Blue window). We use n-gram to extract patterns and
use the pattern set SX and SY to represent the time series, then the time warping of time
series is solved by set similarity.

),....,,(
)()2()1(BN

XXXX BBBB

+1 -1 +1 +1 -1 +1 +1 +1 ……

+1 -1 +1 +1 -1 +1 +1 +1 ……

XS

+1 -1 +1

-1 +1 +1

),....,,(
)()2()1(BN

XXXX BBBB

),....,,(
)()2()1(BN

YYYY BBBB

XS

YS

… …

+1 -1 +1 +1 +1 +1 +1 +1 ……

+1 +1 +1 +1 -1 +1 +1 +1 ……

+1 -1 +1

…

+1 -1 +1

…

(a)

),....,,(
)()2()1(BN

XXXX BBBB

+1 -1 +1 +1 -1 +1 +1 +1 ……

+1 -1 +1 +1 -1 +1 +1 +1 ……

XS

+1 -1 +1

-1 +1 +1

),....,,(
)()2()1(BN

XXXX BBBB

),....,,(
)()2()1(BN

YYYY BBBB

XS

YS

… …

+1 -1 +1 +1 +1 +1 +1 +1 ……

+1 +1 +1 +1 -1 +1 +1 +1 ……

+1 -1 +1

…

+1 -1 +1

…

(b)

to the current W length subsequence of the time series, and a bit indicating the sign of the
output is stored. In technical terms, this is a signed projection of the selected window (Li
and König, 2011; Charikar, 2002). These crude sketches are robust to various perturbations
in the values of time series.

More formally, given a time series X = (x1, x2, ..., xm), the length W of vector r, step size

δ. The extracted information is a (bit) sign stream, given by: BX = (B
(1)
X , B

(2)
X , ..., B

(NB)
X).

Where NB = (m−W)/δ is the size of the sign stream BX . And each B
(i)
X s is calculated as:

B
(i)
X =

{
+1 : r.X

(i)
s ≥ 0

−1 : r.X
(i)
s < 0

In above, X
(i)
s = {xi∗δ, xi∗δ+1, ..., xi∗δ+W−1} is the sub-series of length W .

In this step, we choose r as a spherically symmetric random vector with length W ,
i.e. the entries of r are i.i.d normal, i.e., r ∼ N(0, 1). This choice is a known locality
sensitive hashing for cosine similarity (Li et al., 2011). From the theory of signed random
projections (Li et al., 2011) these bits are 1-bit dimensionality reduction of the associated
small subsequence which was multiplied by r. It ensures that bit matches are a crude
probabilistic indicator of the closeness of local profiles.

3.2 Shingle(n-grams) Generation

After the sketching step we have a bit-string profile BX from the time series X, where
the ith bit value BX(i) is a 1-bit summary (representation) of a small subsequence of X,

i.e. X
(i)
s = {xi∗δ, xi∗δ+1, ..., xi∗δ+W−1}. Therefore, for two vectors X and Y , BX(i) =

BX(j) indicates that the small subsequences X
(i)
s = {xi∗δ, xi∗δ+1, ..., xi∗δ+W−1} and Y

(j)
s =

{yj∗δ, yj∗δ+1, ..., yi∗δ+W−1} are likely to be similar due to the LSH property of the bits.

3.2.1 Intuition of why this captures alignments as well as similarity?

If for two time series X and Y there is a common (or very similar) long subsequence, then
we can expect that a relatively large substring of BX will match with some other significant
substring of BY (with possibly some shift). However, the match will not be exact due
to the probabilistic nature of bits. This situation is very similar to the problem of string
matching based on edit distance, where token based (or n-gram based) approach has shown
significant success in practice. The underlying idea is that if two bit strings BX and BY has

6

Figure 3: Overall framework contains two steps: (1) Preprocess and (2) Query process.
In Preprocess stage, all the time series in data set D hased in to hash tables following
three processing steps: (1) Sliding Window Bit Profile Extraction, (2) Shingle (n-gram)
Generation, (3) Weighted MinHash Computation. In Query Process, given a query time
series, find the associated buckets in the hash tables using the same s-step hashing schema.

…...

……

…

),...,,(21 NXXXD

+1 +1 +1 ……

…
+1 +1 +1 ……

1XS

iXS

…
……

,..., 61 XX

,..., 75 XX

,..., 179 XX

…

,..., 51 XX

,..., 128 XX

,..., 62 XX

…… +1 +1 +1 …… QS
Q

Hash Tables

Query Process

Preprocess

…
…

…

a long common (with some corruption due to probabilistic nature) subsequence, then we
can expect a significant common n-grams (and their frequency) between these bit strings.
It should be noted that n-gram based approach automatically takes care of the alignment
as shown in Fig. 2b.

Formally, given the bit (or sign) stream BX = (B
(1)
X , B

(2)
X , ..., B

(NB)
X) for a time series X,

we construct weighted set SX by including all substrings of length n (n-gram) occurring in
BX with their frequencies as their corresponding weight (see Figure.2a).

SX = {Si, wi | Si = {B(i)
X , B

(i+1)
X , ..., B

(i+n−1)
X } , 0 < i < n}

Notice that, the set is a weighted set, wi denotes the number of tokens (or patterns) Si =

{B(i)
X , B

(i+1)
X , ..., B

(i+n−1)
X } present in the time series. The intuition here is that the Weighted

Jaccard similarity between the sets SX and SY , generated by two different time series X
and Y , captures the closeness of the original time series. This closeness is not affected by
spurious shifting of the time series.

3.3 Weighted MinHash Computation

The Shingle(n-grams) generation step generates a weighted set SX for the given time series
X. Since we want to capture set similarity, our final hash value is simply the weighted
minwise hashing of this set. We use these weighted minwise hashes as the final indexes of
the time series X, which can be utilized for creating hash tables for sub-linear search.

Weighted minwise hashing (or Consistent Weighted Sampling) is a standard technique
for indexing weighted sets (Broder et al., 1997). There are many efficient methodologies
to compte them (Manasse et al., 2010; Ioffe, 2010; Shrivastava and Li, 2014a,c; Haeupler
et al., 2014; Shrivastava, 2016). Please refer to (Shrivastava, 2016) for details.

3.4 Overall Framework

Given a time series search data set D = {Xi|1 ≤ i ≤ N}, the query time series Q, and the
corresponding parameters W , r, δ. Our goal is to output the top-k most similar time series
of Q. The proposed framework contains two steps (1) Preprocessing Step: preprocess all
the time series, and hash them into hash tables using our 3-step SSH scheme (2) Query step,
given a time series, find the associated buckets in the hash tables using the same 3-step
SSH scheme. Select top-k among the candidates retrieved from the buckets. The detailed

7

steps of our proposed framework are illustrated in Figure.3. And the summarization of SSH
algorithm and the corresponding practical issues are introduced in Appendix B.

3.5 Discussions and Practical Issues

The SSH procedure leads to a weighted set which combines noisy sketching with cheap
shingle based representation. Shingling (or Bag-of-Words or n-grams statistics) is a very
powerful idea and has led to state-of-the-art representations for a variety of structured data
which includes text, images, genomes, etc. It is further known that shingling is a lossy
description because it does not capture complete information of the sequence data, and
therefore do no have provable guarantees. Nevertheless, reasonably higher order shingles
are still the best performing methods in the information retrieval task with both text and
image datasets. For example, the state-of-the-art method for image retrieval, as imple-
mented in popular openCV (Bradski and Kaehler, 2008) package, compute various noisy
features such as SIFT and then represent the image as bag-of-words of those SIFT fea-
tures. The main argument that goes in favor of noisy representations is that real world
high-dimensional datasets come from a distribution which makes the problem much simpler
than the combinatorial hardness associated with their raw representations. A noisy repre-
sentation many times is good enough to capture the essence of that distribution and thus
can save significantly over methods which solve the problem exactly.

In SSH procedure there are three main parameters: Length W of the spherically sym-
metric random vector r, step size δ, and n-gram Shingle Length n. Different choice of these
parameters will impact the performance of SSH. As with other shingling methods, the right
selection of the parameters is usually dependent on the data and the similarity distribu-
tion. We can easily choose these parameters using a holdout dataset that suits our task.
Since we are interested in retrieving with the DTW measure, we determine values of these
parameters such that the rankings under hash collisions nearly agree with the ranking of
DTW over a small sample of the dataset. We introduce details, and thorough analysis of
these parameters study in section 4.

It should be further noted that the overall hashing scheme can be computed in just one
pass over the time series. As we scan, can keep a sliding window over the time to calculate
the inner product with filter r. Each bit generated goes into a buffer of size n. For every
n-gram generated, we can hash the tokens and update the minimum on the fly.

4. Experiment

In this section, we describe our experimental evaluation of SSH procedure on two benchmark
data set: ECG time series data and Random Walk time series data. Since our proposal is a
new indexing measure for DTW similarity, just like Rakthanmanon et al. (2012), our gold
standard accuracy will be based on the DTW similarity. The details of parameter study is
in the Appendix 3

4.1 Experiment Setup

DataSets: To evaluate the effectiveness of our method for searching over time series, we
choose two publicly available large time series data which were also used by the UCR suite
paper Rakthanmanon et al. (2012): Random Walk, and ECG 2. Random Walk is a bench-

8

Table 2: Recall of SSH Framework and SRP (Sign Random Projection) on ECG and Ran-
dom Walk Dataset for retrieving top-k (k = 5, 10, 20, 50) time series.

Dataset Length Method Top-5 Top-10 Top-20 Top-50

ECG

128
SSH 1.00± 0.00 1.00± 0.00 0.95± 0.05 0.90± 0.02
SRP 0.20± 0.00 0.10± 0.10 0.10± 0.05 0.04± 0.02

512
SSH 1.00± 0.00 1.00± 0.00 0.90± 0.05 0.88± 0.02
SRP 0.00± 0.00 0.10± 0.10 0.05± 0.05 0.04± 0.02

1024
SSH 1.00± 0.00 1.00± 0.00 0.95± 0.05 0.92± 0.02
SRP 0.00± 0.00 0.00± 0.00 0.05± 0.05 0.02± 0.02

2048
SSH 1.00± 0.00 1.00± 0.00 0.95± 0.05 0.94± 0.02
SRP 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

Random Walk

128
SSH 1.00± 0.00 1.00± 0.00 0.95± 0.00 0.88± 0.02
SRP 0.00± 0.00 0.20± 0.10 0.10± 0.05 0.04± 0.02

512
SSH 1.00± 0.00 1.00± 0.00 0.95± 0.00 0.86± 0.02
SRP 0.00± 0.00 0.00± 0.00 0.05± 0.00 0.04± 0.02

1024
SSH 1.00± 0.00 1.00± 0.00 0.90± 0.10 0.90± 0.04
SRP 0.00± 0.00 0.10± 0.00 0.05± 0.05 0.04± 0.00

2048
SSH 1.00± 0.00 1.00± 0.00 0.95± 0.05 0.92± 0.02
SRP 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.02± 0.02

mark dataset, which is often used for testing the similarity search methods Rakthanmanon
et al. (2012). The ECG data consists of 22 hours and 23 minutes of ECG data (20,140,000
data points). For the 22 Hour ECG time series data. We choose window size W = 80,
δ = 3, and n = 15 for n-gram based set construction, and we use 20 hash tables, for each
hash table using our hash as index. For the Random Walk Benchmark time series data.
We choose window size W = 30, δ = 5, and n = 15 for n-gram based set construction, and
we use 20 hash tables.

Baselines: Since UCR suite is the state-of-the-art algorithm for searching over time
series data, we use it as our best branch-and-bound baseline. Note that branch-and-bound
baselines are exact. We point out here that there is no known data independent hashing
scheme for time series data that can handle misalignment of time series. So, as another
sanity check, we also compare the performance of vanilla hashing scheme the signed random
projections (SRP) to confirm if the alignment is a critical aspect. For SRP, we simply regard
the time series as long vectors. If alignment is not critical then treating time series as vectors
is a good idea and we can expect SRP to perform well.

Task: We consider the standard benchmark task of near-neighbor search over time series
data with DTW as the gold standard measure. To understand the variance of performance
we run our hashing algorithm SSH, as described in Section 3, for searching top-k near
neighbors. The gold standard top-k neighbors were based on the actual DTW similarity.
For the SRP baseline, we replace SSH indexing procedure with SRP hash function. For a
rigorous evaluation we run these algorithms with a different values of k = {5, 10, 20, 50}.
We also demonstrate the speedup obtained using the SSH procedure. We compute the
average query time which is the time required to retrieve top-k candidates using Algorithm 3.
The query time includes the time needed to compute the SSH indexes of the query.

Evaluation Metric: We use recall, running time, percentage pruned and NDCG (Nor-
malized Discounted Cumulative Gain) Wang et al. (2013) to evaluate our method. The
result of NDCG is deferred to Appendix 3.

9

Dataset Method 128 512 1024 2048

ECG
SSH 2.30 5.50 39.57 339.57

UCR Suite 7.90 20.28 309.57 7934.61

RW
SSH 1.21 3.20 15.20 216.48

UCR Suite 3.32 42.12 297.65 1934.61

Table 3: CPU Execution time (in seconds) of UCR Suite and our proposed hashing method
on ECG and Random Walk Dataset, with increasing query length. RW in the table stands
for Random Walk data set.

4.2 Results

The ranking result on ECG and Random walk dataset is shown in Table.2. We can see
from that the proposed SSH based ranking achieves near perfect result for most values of
k and gracefully decreases for large k. This deterioration with increasing k is expected as
hashing techniques are meant for high similarity region. On the contrary, the performance
of SRP is quite poor irrespective of the values of k, indicating the importance of alignment.

The CPU execution time of our method and exact search method using UCR Suite is
shown in Table 3. We can clearly see that hashing based method is significantly faster in
all the experiments consistently over both the data sets irrespective of the length of the
query. For searching with long time series (e.g. 2048 or higher) hashing based method
is drastically efficient consistently. It can be around 20 times faster than the UCR suite.
We also highlight the candidates pruned by hashing alone and separate it from the total
candidates pruned. We summarize these percentages in Table. 4. Hashing based pruning
works better with an increase in the time series length.

Dataset Method 128 512 1024 2048

ECG
SSH (Full) 99.9% 98.8% 90.8% 95.7%
SSH (Hash) 72.4% 76.4% 88.7% 95.4%
UCR Suite 99.7% 94.96% 18.70% 7.76%

RW
SSH (Full) 99.6% 97.6% 94.2% 92.6%
SSH (Hash) 75.4% 86.4% 91.7% 92.4%
UCR Suite 98.6% 82.7% 30.2% 3.5%

Table 4: Percentage of time series filtered by the SSH for different query length. Hashing,
unlike branch and bound, becomes more effective for longer sequences.

5. Conclusions

We have proposed SSH (Sketch, Shingle & Hash) the first indexing scheme which does both
the alignment and matching on time series data. SSH combines carefully chosen three step
procedure for indexing time series data which as we demonstrate are ideal for searching
with DTW similarity measure. For similarity search with time series data, we show around
20x speedup over the fastest package UCR suite on two benchmark datasets.

Acknowledgments

We are thankful for UCR time series Team for providing the UCR Suite code and data.
This work was supported by Rice Faculty Initiative Award 2016.

10

Appendix A. Background

In this section, we first introduce DTW (Dynamic Time Warping) for time series, and then
we introduce Locality Sensitive Hashing and Weighted Minwise Hashing.

A.1 Dynamic Time Warping and Expensive Computation

One of the peculiarities of time series similarity which is different from general vector similar-
ity is its invariance with warping or shift in time. For example, a series X = {x1, x2, ..., xm},
associated with timestamps:

{t(x1), t(x2), ..., t(xm)}

should be very similar to a slightly shifted time series X ′ = {x3, x4,, xm, y, z} over the
same time stamps. This high similarity is because there is a significantly long subsequence
of X and X ′, which are identical (or very similar). Traditional measures such as L2 distance
are not suitable for such notions of similarity as they are sensitive to shifts. Dynamic Time
Warping (DTW) was designed to align various systematic inconsistencies in the time series,
which is the main reason behind its wide adoption.

To compute the DTW distance we construct an m-by-m matrix W , where the (i-th,j-
th) element of the matrix W denotes the difference between i-th component of X and j-th
component of Y . The DTW distance finds the path through the matrix that minimizes the
total cumulative distance between X and Y (Fig. 4). The optimal path is the one that
minimizes the warping cost:

DTW (X,Y) = min

√√√√ K∑
k=1

wk

where, wk is the k − th element of a warping path P , which is a contiguous set of elements
that represent a mapping between X and Y . The overall computation of DTW is given by
a dynamic program, please see (Rakthanmanon et al., 2012) for more details.

DTW is costly as it requires O(m2) computations using a dynamic programming so-
lution, where m is the time series length. DTW computes the optimal alignment of the
two given time series followed by calculating the optimal similarity after the alignment. As
expected, alignment is a slow operation. To make searching, with DTW, efficient a common
strategy is to resort of branch and bound based early pruning (Rakthanmanon et al., 2012).

A.2 Locality Sensitive Hashing and Weighted Minwise Hashing

A.3 Locality Sensitive Hashing (LSH)

Locality-sensitive hashing (LSH) (Andoni and Indyk, 2006; Li et al., 2011) is common for
sub-linear time near neighbor search. The basic idea of LSH is to hash input items to
different buckets so that similar items map to the same “buckets” with high probability.

LSH generates a random hash map h which takes the input (usually the data vector) and
outputs a discrete (random) number. For two data vectors x and y, the event h(x) = h(y)
is called the collision (or agreement) of hash values between x and y. The hash map has
the property that similar data vectors, in some desired notion, have a higher probability

11

X

YEuclidean Distance: cannot deal with

time warping.

DTW: Alignment, then distance calculation.

Two similar time series with time warping.

Euclidean

Distance

DTW

Distance

X

X

Y

Y

Figure 4: The difference between Euclidean and DTW distances of two time series X and
Y . The DTW distance computes the similarity of the best alignment and hence can deal
with time warping of X and Y .

of collisions than non-similar data vectors. Informally, if x and y are similar, then h(x) =
h(y) is a more likely event, while if they are not similar then h(x) 6= h(y) is more likely.
The output of the hash functions is a noisy random fingerprint of the data vector (Carter
and Wegman, 1977; Rabin, 1981; Karp and Rabin, 1987), which being discrete is used for
indexing training data vectors into hash tables. These hash tables represent an efficient
data structure for similarity search (Indyk and Motwani, 1998).

For the details of Locality-sensitive hashing, please refer (Andoni and Indyk, 2006; Li
et al., 2011).

A.4 Weighted Minwise Hashing

Weighted Minwise Hashing is a known LSH for the Weighted Jaccard similarity (Leskovec
et al., 2014). Given two positive vectors x, y ∈ RD, x, y > 0, the (generalized) Weighted
Jaccard similarity is defined as

J(x, y) =

∑D
i=1 min{xi, yi}∑D
i=1 max{xi, yi}

. (1)

J(x, y) is a frequently used measure for comparing web-documents (Broder, 1997), his-
tograms (specially images), gene sequences, etc. Recently, it was shown to be a very effective
kernel for large-scale non-linear learning (Li, 2015). WMH leads to the best-known LSH for
L1 distance, commonly used in computer vision, improving over (Datar et al., 2004).

Weighted Minwise Hashing (WMH) (or Minwise Sampling) generates randomized hash
(or fingerprint) h(x), of the given data vector x ≥ 0, such that for any pair of vectors x and
y, the probability of hash collision (or agreement of hash values) is given by,

Pr(h(x) = h(y)) =

∑
min{xi, yi}∑
max{xi, yi}

= J(x, y). (2)

A notable special case is when x and y are binary (or sets), i.e. xi, yi ∈ {0, 1}D . For this

case, the similarity measure boils down to J(x, y) =
∑

min{xi,yi}∑
max{xi,yi} = |x∩y|

|x∪y| .

12

Weighted Minwise Hashing (or Sampling), (Broder, 1997; Broder et al., 1997; Manasse
et al., 2010) is the most popular and fruitful hashing technique for indexing weighted sets,
commonly deployed in commercial big-data systems for reducing the computational re-
quirements of many large-scale search (Broder, 1998; Bayardo et al., 2007; Henzinge, 2004;
Henzinger, 2006; Koudas et al., 2006; Chien and Immorlica, 2005). Recently there has been
many efficient methodologies to compute weighted minwise hashing (Manasse et al., 2010;
Ioffe, 2010; Shrivastava and Li, 2014a,c; Haeupler et al., 2014; Shrivastava, 2016).

Appendix B. Algorithm Summarization

The SSH algorithm is summarized in Algorithm 1, and Algorithm 2.

Algorithm 1 Pre-Processing

1: Input: Given D = {Xi|0 < i < N − 1}, the sub-series of length W . a spherically
symmetric random vector r with length W , step size δ, n-gram Shingle Length n,
number of hash tables d.

2: Output: Constructed d hash tables.
3: Initialization i = 0
4: for Each time series Si in D do
5: Extract the information of time series Si using the method introduced in Section.

3.1.
6: Using n-gram method introduced in Section 3.1.
7: Using weighted minhash algorithm introduced in Section 3.3 to hash each time series

into d different hash tables.
8: end for
9: return Constructed d hash tables.

Algorithm 1 shows the Preprocessing stage using the SSH scheme. This stage takes
the time series data sets D = {Xi|1 ≤ i ≤ N} as input, and construct d hash tables. In
Algorithm 1, for each time series Si in D, we perform Sliding Window Bit Profile Extraction
(line 5), Shingle (n-gram) Generation (line 6), and Weighted MinHash Computation (line
7). These three SSH steps (line 5-7) hashes the time series into appropriate hash tables for
future queries.

Algorithm 2 shows the querying process with the SSH scheme. This stage takes the query
time series Q as input and returns top-k time series. We use the same SSH steps, Sliding
Window Bit Profile Extraction (line 3), Shingle (n-gram) Generation (line 4), and Weighted
MinHash Computation (line 5) on the query time series Q to generate the indexes. Using
these indexes, we then probe the buckets in respective hash tables for potential candidates.
We then report the top-k similarity time series, based on DTW (line 7-10). The reporting
step requires full computation of DTW between the query and the potential candidates.
To obtain more speedups, during the last step, we use the UCR suite branch-and-bound
algorithm to prune the potential candidate further.

13

Algorithm 2 Query Process

1: Input: Given D = {Xi|0 < i < N − 1}, the sub-series of length W . a spherically
symmetric random vector r with length W , step size δ, n-gram Shingle Length n, and
the number of return series k.

2: Output: Top k time series in D.
3: Extract the information of time series Q using the method introduced in Section. 3.1.
4: Using n-gram method introduced in Section 3.1 to get the weighted set of Q.
5: Using weighted minhash algorithm introduced in Section 3.3 to ge the hash value of Q.
6: Initialize the retrieved set R to null
7: for Each Hash table Ti do
8: Add all the time series in the probed bucket to R
9: end for

10: return Search R for top-k time series using UCR Suite algorithm

Figure 5: The NDCG (Normalized Discounted Cumulative Gain) of SSH and SRP (Sign
Random Projection) on ECG and Random Walk Datasets. The Gold Standard Ranking
was based on DTW Distance.

3. Experiment

The experiments run on a PC (Xeon(R) E3-1240 v3 @ 3.40GHz × 8 with 16GB RAM). All
code are implemented in C++. We use g++ 4.8.4 compiler. To avoid complications, we do
not use any c++ compiler optimization tools to speed up the program.

3.1 Accurate Comparison of NDCG

Figure. 5 shows the performance comparison using NDCG.

14

20 40 60 80 100
Varying the Dimension of Filter W

0

0.2

0.4

0.6

0.8

1
T

op
-5

0
S

ea
rc

h
A

cc
ur

ac
y

ECG
Random Walk

(a) Accuracy with respect to the filter dimen-
sion W for the two data sets.

20 40 60 80 100

#Varying the Dimension of Filter W

1

1.5

2

2.5

C

P
U

 E
xe

cu
tio

n
T

im
e

(m
s)

Mean Pre-processing Time for One Series

(b) Preprocessing time with respect to the
filter dimension W .

Figure 6: Accuracy and Preprocessing time with respect to the filter dimension W .

3.2 Parameter Study

As we introduced in Section 3.5. The proposed hashing scheme takes W (the dimension of
the filter r), δ (the shift size) and n (shingle length) as parameters. The choice of these
parameters is critical for the performance. In this section, we shall show the impact of
these three parameters on the retrieving accuracy and execution time. This study will also
explain the selection procedure of the parameters we used in our experiments.

3.2.1 W (the dimension of filter)

The dimension W of the filter r in our framework is a critical parameter. If W is too large,
then the 1-bit sketch is likely to be non-informative and won’t capture temporal trends.
Also, it may merge significant patterns of the time series. On the other hand, if the choice
of W is too small, then the sub-series may only contain component information which can
be very noisy. Thus there is a trade-off. From the execution time perspective view, if we
choose large W , the preprocessing execution time will increase due to the inner product
operation. As a result, proper choice of W is an imperative step of our framework.

Fig. 6a shows the precision of SSH indexes, for top-50 neighbors, with varying filter
dimension W for the two data sets. We can see from the figure that when the W is small,
the accuracy is reduced. With the increase of the filter dimension W , the accuracy starts
increasing and after reaching a sweet spot drops again. We achieve the sweet spot at W=80
for ECG time series data and W=30 for random walk data respectively.

Fig. 6b shows the preprocessing time with varying filter dimension W for the two data
sets. From the result, we can see that the average running time for preprocessing on a
single time series is linear to the dimension of W . This is because the preprocessing time
will increase due to the increase in the number of inner product operation.

3.2.2 δ (the shift size)

The shift size δ of the SSH scheme shows a consistent trend of decreasing the accuracy
with an increase in δ. The best δ is δ = 1. However, a smaller δ increase the execution
complexity of SSH because of the number of inner products. Large δ leads to information
loss. Fig. 7a shows the accuracy with the shift size δ for the two data sets, whereas Fig.
7b shows the preprocessing time by varying the shift size δ for the two data sets. From

15

0 2 4 6 8 10
Varying Shift Size δ

0.4

0.5

0.6

0.7

0.8

0.9

1

T
op

-5
0

S
ea

rc
h

A
cc

ur
ac

y

ECG
Random Walk

(a) Accuracy with respect to the shift size δ
for two data sets.

0 20 40 60 80

#Varying the Shift Size δ

0

1

2

3

C

P
U

 E
xe

cu
tio

n
T

im
e

(m
s)

Mean Pre-processing Time for One Series

(b) Preprocessing time with respect to the
shift size δ

Figure 7: Accuracy and Preprocessing time with respect to the shift size δ.

0 10 20 30 40 50
Varying the Shingle Length n

0.2

0.4

0.6

0.8

1

T
op

-5
0

S
ea

rc
h

A
cc

ur
ac

y

ECG
Random Walk

15

(a) Accuracy by varying the shingle length n
for the two data sets.

0 20 40 60 80
Varying the Shingle Length n

0.7

0.8

0.9

1

1.1

#C
P

U
 E

xe
ct

ut
io

n
T

im
e

(m
s)

Mean Pre-Processing Time for One Series

(b) Preprocessing execution time by varying
the filter dimension n for the two data sets.

Figure 8: Accuracy and Preprocessing time with respect to the shingle length n.

the result, we can see that the average running time for preprocessing increases with the
decreasing of the shift size. To balance this accuracy-time trade-off we chose δ = 3 for ECG
and δ = 5 for random walk data respectively.

3.2.3 n (shingle length)

The shingle length n in SSH turns out to be a sensitive and critical parameter. Just like
the behavior of n-grams in the text, too large to too little n hurts the performance.

Fig. 8a shows the accuracy by varying the Shingle length n for the two data sets. We
can see from the figure that when the n is too small, the accuracy is poor. With the
increasing of the shingle length n, the accuracy also increase. For both ECG and Random
Walk datasets, n=15 seems to be the right sweet spot. With further increasing in n, the
accuracy start to decrease.

Fig. 8b shows the preprocessing execution time by varying the filter dimension n for the
two data sets. As expected, we can see that the average running time for preprocessing is
linear to the dimension of n. When the shingle length n increases, the constructed weighted
set S will become larger, thus the execution time will also increase.

16

References

Rakesh Agrawal, Christos Faloutsos, and Arun Swami. Efficient similarity search in sequence
databases. In FODO, pages 69–84. Springer, 1993.

Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. In FOCS, pages 459–468. IEEE, 2006.

Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. Scaling up all pairs similarity
search. In WWW, pages 131–140, 2007.

Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer vision with the OpenCV
library. ” O’Reilly Media, Inc.”, 2008.

Andrei Z. Broder. On the resemblance and containment of documents. In the Compression
and Complexity of Sequences, pages 21–29, Positano, Italy, 1997.

Andrei Z. Broder. Filtering near-duplicate documents. In FUN, Isola d’Elba, Italy, 1998.

Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig. Syntactic
clustering of the web. In WWW, pages 1157 – 1166, Santa Clara, CA, 1997.

Juan P Caraça-Valente and Ignacio López-Chavarŕıas. Discovering similar patterns in time
series. In SIGKDD, pages 497–505. ACM, 2000.

J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. In STOC,
pages 106–112, 1977.

Moses S. Charikar. Similarity estimation techniques from rounding algorithms. In STOC,
pages 380–388, Montreal, Quebec, Canada, 2002.

Steve Chien and Nicole Immorlica. Semantic similarity between search engine queries using
temporal correlation. In WWW, pages 2–11, 2005.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokn. Locality-sensitive
hashing scheme based on p-stable distributions. In SCG, pages 253 – 262, 2004.

Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn Keogh. Query-
ing and mining of time series data: experimental comparison of representations and dis-
tance measures. VLDB, 1(2):1542–1552, 2008.

Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search in high dimensions
via hashing. In VLDB, volume 99, pages 518–529, 1999.

Clive William John Granger and Paul Newbold. Forecasting economic time series. Academic
Press, 2014.

Bernhard Haeupler, Mark Manasse, and Kunal Talwar. Consistent weighted sampling made
fast, small, and easy. Technical report, arXiv:1410.4266, 2014.

Monika .R. Henzinge. Algorithmic challenges in web search engines. Internet Mathematics,
1(1):115–123, 2004.

17

Monika Henzinger. Finding near-duplicate web pages: a large-scale evaluation of algorithms.
In SIGIR, pages 284–291. ACM, 2006.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the
curse of dimensionality. In STOC, pages 604–613, Dallas, TX, 1998.

Piotr Indyk, Nick Koudas, and S. Muthukrishnan. Identifying representative trends in
massive time series data sets using sketches. In VLDB, pages 363–372, San Francisco,
CA, USA, 2000. Morgan Kaufmann Publishers Inc. ISBN 1-55860-715-3. URL http:

//dl.acm.org/citation.cfm?id=645926.671699.

Sergey Ioffe. Improved consistent sampling, weighted minhash and l1 sketching. In ICDM,
pages 246–255. IEEE, 2010.

David C Kale, Dian Gong, Zhengping Che, Yan Liu, Gerard Medioni, Randall Wetzel, and
Patrick Ross. An examination of multivariate time series hashing with applications to
health care. In ICDM, pages 260–269. IEEE, 2014.

Richard M Karp and Michael O Rabin. Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, 31(2):249–260, 1987.

Eamonn Keogh and Chotirat Ann Ratanamahatana. Exact indexing of dynamic time warp-
ing. Knowledge and information systems, 7(3):358–386, 2005.

Eamonn Keogh, Li Wei, Xiaopeng Xi, Michail Vlachos, Sang-Hee Lee, and Pavlos Protopa-
pas. Supporting exact indexing of arbitrarily rotated shapes and periodic time series
under euclidean and warping distance measures. VLDBJ, 18(3):611–630, 2009.

Sang-Wook Kim, Sanghyun Park, and Wesley W Chu. An index-based approach for similar-
ity search supporting time warping in large sequence databases. In ICDE, pages 607–614.
IEEE, 2001.

Nick Koudas, Sunita Sarawagi, and Divesh Srivastava. Record linkage: similarity measures
and algorithms. In SIGMOD, pages 802–803. ACM, 2006.

Brian Kulis and Kristen Grauman. Kernelized locality-sensitive hashing for scalable image
search. In ICCV, pages 2130–2137. IEEE, 2009.

Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive datasets.
Cambridge University Press, 2014.

Ping Li. 0-bit consistent weighted sampling. In KDD, 2015.

Ping Li and Arnd Christian König. Theory and applications b-bit minwise hashing. Com-
mun. ACM, 2011.

Ping Li, Anshumali Shrivastava, Joshua L Moore, and Arnd C König. Hashing algorithms
for large-scale learning. In NIPS, pages 2672–2680, 2011.

18

http://dl.acm.org/citation.cfm?id=645926.671699
http://dl.acm.org/citation.cfm?id=645926.671699

Chen Luo, Jian-Guang Lou, Qingwei Lin, Qiang Fu, Rui Ding, Dongmei Zhang, and Zhe
Wang. Correlating events with time series for incident diagnosis. In KDD, pages 1583–
1592. ACM, 2014a.

Chen Luo, Wei Pang, Zhe Wang, and Chenghua Lin. Hete-cf: Social-based collabora-
tive filtering recommendation using heterogeneous relations. In 2014 IEEE International
Conference on Data Mining, pages 917–922. IEEE, 2014b.

Mark Manasse, Frank McSherry, and Kunal Talwar. Consistent weighted sampling. Tech-
nical Report MSR-TR-2010-73, Microsoft Research, 2010.

Manfred Mudelsee. Climate time series analysis. Springer, 2013.

Tim Oates, Matthew D Schmill, and Paul R Cohen. A method for clustering the experiences
of a mobile robot that accords with human judgments. In AAAI, pages 846–851, 2000.

Michael O. Rabin. Fingerprinting by random polynomials. Technical Report TR-15-81,
Center for Research in Computing Technology, Cambridge, MA, 1981.

Lawrence Rabiner and Biing-Hwang Juang. Fundamentals of speech recognition. 1993.

Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Batista, Brandon
Westover, Qiang Zhu, Jesin Zakaria, and Eamonn Keogh. Searching and mining trillions
of time series subsequences under dynamic time warping. In KDD, pages 262–270. ACM,
2012.

Jinfeng Rao, Xing Niu, and Jimmy Lin. Compressing and decoding term statistics time
series. In European Conference on Information Retrieval, pages 675–681. Springer, 2016.

Anshumali Shrivastava. Simple and efficient weighted minwise hashing. In NIPS, 2016.

Anshumali Shrivastava and Ping Li. Densifying one permutation hashing via rotation for
fast near neighbor search. In ICML, Beijing, China, 2014a.

Anshumali Shrivastava and Ping Li. Asymmetric lsh (alsh) for sublinear time maximum
inner product search (mips). In NIPS, Montreal, CA, 2014b.

Anshumali Shrivastava and Ping Li. Improved densification of one permutation hashing. In
UAI, Quebec, CA, 2014c.

Anshumali Shrivastava and Ping Li. Asymmetric minwise hashing for indexing binary inner
products and set containment. In WWW, pages 981–991. ACM, 2015.

Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image processing, analysis, and machine
vision. Cengage Learning, 2014.

Chengnian Sun, Haidong Zhang, Jian-Guang Lou, Hongyu Zhang, Qiang Wang, Dongmei
Zhang, and Siau-Cheng Khoo. Querying sequential software engineering data. In FSE,
pages 700–710. ACM, 2014.

19

Yining Wang, Liwei Wang, Yuanzhi Li, Di He, Wei Chen, and Tie-Yan Liu. A theoretical
analysis of ndcg ranking measures. In COLT, 2013.

Ming-Hsuan Yang, David J Kriegman, and Narendra Ahuja. Detecting faces in images: A
survey. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(1):34–58,
2002.

Dan Zhang, Fei Wang, and Luo Si. Composite hashing with multiple information sources.
In SIGIR, pages 225–234. ACM, 2011.

Dell Zhang, Jun Wang, Deng Cai, and Jinsong Lu. Self-taught hashing for fast similarity
search. In SIGIR, pages 18–25. ACM, 2010.

20

	Introduction
	Longer Subsequences and Issues with Branch and Bound
	Our Proposal: SSH (Sketch, Shingle & Hash)
	Sliding Window Bit-profile Extraction
	Shingle(n-grams) Generation
	Intuition of why this captures alignments as well as similarity?
	Weighted MinHash Computation
	Overall Framework
	Discussions and Practical Issues

	Experiment
	Experiment Setup
	Results

	Conclusions
	Background
	Dynamic Time Warping and Expensive Computation
	Locality Sensitive Hashing and Weighted Minwise Hashing
	Locality Sensitive Hashing (LSH)
	Weighted Minwise Hashing

	Algorithm Summarization
	Experiment
	Accurate Comparison of NDCG
	Parameter Study
	W (the dimension of filter)
	 (the shift size)
	n (shingle length)

