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ABSTRACT
We study the problem of query attribute value extraction, which
aims to identify named entities from user queries as diverse surface
form attribute values and afterward transform them into formally
canonical forms. Such a problem consists of two phases: named
entity recognition (NER) and attribute value normalization (AVN).
However, existing works only focus on the NER phase but neglect
equally important AVN. To bridge this gap, this paper proposes
a unified query attribute value extraction system in e-commerce
search named QUEACO, which involves both two phases. Moreover,
by leveraging large-scale weakly-labeled behavior data, we further
improve the extraction performance with less supervision cost.
Specifically, for the NER phase, QUEACO adopts a novel teacher-
student network, where a teacher network that is trained on the
strongly-labeled data generates pseudo-labels to refine the weakly-
labeled data for training a student network. Meanwhile, the teacher
network can be dynamically adapted by the feedback of the stu-
dent’s performance on strongly-labeled data to maximally denoise
the noisy supervisions from the weak labels. For the AVN phase, we
also leverage the weakly-labeled query-to-attribute behavior data
to normalize surface form attribute values from queries into canon-
ical forms from products. Extensive experiments on a real-world
large-scale E-commerce dataset demonstrate the effectiveness of
QUEACO.
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1 INTRODUCTION
Query attribute value extraction is the joint task of detecting named
entities in the search queries as the diverse surface form attribute
values and normalizing them into a canonical form to avoid mis-
spelling and abbreviation problems. These two sub-tasks are typi-
cally called named entity recognition (NER) [7] and attribute value
normalization (AVN) [41].

Figure 1: The ideal product attribute extraction pipeline.

As shown in Figure 1, we illustrate the process of the ideal query
attribute value extraction. When a user enters the query “MK tote
for womans”, we firstly use a NER model to identify the entity
type “brand” for "MK", “product type” for "tote", and “audience”
for “womans”. These extracted named entities are in the informal
surface form of attribute values. However, such an informal surface
is not accordant with the products indexed with canonical form
attribute values in the formal written style. Specifically, “MK” is an
abbreviation of brand “Michael Kors”, “tote” is a hyponym of the
product type "handbag", and “womans” contains a spelling error.
This misalignment poses tremendous challenges to the product
search engine to retrieve relevant product items that users really
prefer. Therefore, the AVNmodule is equally important to transform
the surface form for each attribute value into the canonical form,
i.e., “MK” to “Michael Kors”, “tote” to “handbag” and “womans” to
“women”. In the E-commerce domain, extracting these attributes
values from queries is critical to a wide variety of product search
applications, such as product retrieval [5] and ranking [48], and
query rewriting [15].

Unfortunately, existing works only focus on the surface form at-
tribute value extraction based on NER while ignoring the canonical
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Case# Query & Ground-truth Labels Clicked Product Attribute Values Weak Labels
1 [lg][smart tv][32] lg, 32-inch, television [lg] smart tv 32
2 [womans][socks] women, socks womans [socks]
3 [braun][7 series][shaver] braun, series 7 , electric shaver [braun] 7 series shaver
4 [trixie] [cat litter tray bags][46 x 59][10 pack] Trixie, waste bag, 46 × 59 cm [trixie] cat litter tray bags 46 x 59 10 pack

Table 1: Ground-truth labels and noisy weakly-labels for query NER examples based on the behavior data from the product
side.We use colors to denote the entity type and use brackets to indicate the entity boundary. Entity labels: Brand, ProductLine,
Size, ProductType, Audience.

form transformation, which is impractical in the realistic scenar-
ios [5, 10, 21, 48]. To bridge this gap, this paper proposes a unified
query attribute value extraction system that involves both phases.
By borrowing treasures from large-scale weakly-labeled behavior
data to mitigate the supervision cost, we further improve the extrac-
tion performance. Considering the first NER stage, recent advances
in deep learning models (e.g., Bi-LSTM+CRF) have achieved promis-
ing results [18, 42]. However, they highly rely on massive labeled
data, where manual labeling for token-level labels is particularly
costly and labor-intensive. To alleviate the issue in E-commerce,
prior studies [5, 21, 48] resort to leveraging large-scale behavior
data from the product side as the weak supervision for queries
based on some simple string match strategies. Nonetheless, these
weakly-supervised labels contain enormous noises due to the par-
tial or incomplete token labels based on the exact string matching.
For example, as shown in Table 1 case#1, when we use the attribute
values of top-clicked product “LG 32-inch television”, i.e., “brand”
for “LG”, “size” for “32-inch”, “product type” for “television”as the
weak supervision to match the query “lg smart tv 32”, it can only
generate the label “brand” for “lg”, concealing useful knowledge for
the unannotated tokens. For this reason, weak supervision-based
methods [5, 45] usually perform very poorly, even worse after pow-
erful pre-trained language models (PLMs) (e.g., BERT [11] ) are
introduced since PLMs are much easier to fit noises. To address
the issue, we consider a more reliable regime, which further in-
cludes some strongly-labeled human annotated data to denoise
the weak labels from the distant supervision. As such, the NER
model can be improved by making more effective use of both the
large-scale weakly-labeled behavior data and the strongly-labeled
human-annotated data.

As for the second AVN phase, customers tend to use diverse
surface forms to mention each attribute value in search queries
due to the misspellings, spelling variants, or abbreviations. This
circumstance occurs frequently in user queries and product titles
of e-commerce. For example, eBay has noted that 20% product
titles in the clothing and shoes category involve such surface form
brand [41]. Thus, normalizing these surface form attribute values
derived from the NER signals to a single normalized attribute value
is critical. It is usually ignored by existing works [5, 10, 21, 48]. To
mitigate human annotating efforts, weakly-labeled behavior data
can also contribute to the AVN. For example, “MK tote for womans”
mentioning the brand “MK” leads to the click of product items
associated with the brand “Michael Kors”. We can reasonably infer
a strong connection between the surface form value “MK” and the
canonical form value “Michael Kors” if this association occurs in
many queries.

Motivated by those, we propose a unifiedQUEryAttribute Value
Extraction in ECOmmerce (QUEACO) framework that efficiently
utilizes the large-scale weakly-labeled behavior data for both the
query NER and AVN. For query NER, QUEACO leverages the
strongly-labeled data to denoise the weakly-labeled data based on
a novel teacher-student network, where a teacher network trained
on the strongly-labeled data generates pseudo-labels to refine the
weakly-labeled data for teaching a student network. Unlike the clas-
sic teacher-student networks that can only produce pseudo-labels
from a fixed teacher, our pseudo-labeling process from the teacher
is continuously and dynamically adapted by the feedback of the
student’s performance on the strongly-labeled data. This encour-
ages the teacher network to generate better pseudo-labels to teach
the student, maximally mitigating the error propagation from the
noisy weak labels. For query AVN, we utilize the weakly-labeled
query-to-attribute behavior data and QUEACO NER predictions
to model the associations between the surface form and canonical
form attribute values. As such, the surface form attribute values
from queries can be normalized to the most relevant canonical form
attribute values from the products. Empirically, extensive experi-
ments on a real-world large-scale E-commerce dataset demonstrate
that QUEACO NER can significantly outperform the state-of-the-
art semi-supervised and weakly-supervised methods. Moreover, we
qualitatively show the effectiveness and the necessity of QUEACO
AVN.

Our contributions can be summarized as follows: (1) To the best
of our knowledge, our work is the first attempt to propose a unified
query attribute value extraction system in E-commerce, involving
both the query NER and AVN. QUEACO can automatically identify
product-related attributes from user queries and transform them
into canonical forms, by leveraging weak supervisions from large-
scale behavior data; (2) Our QUEACONER is also the first work that
efficiently utilizes both human-annotated strongly-labeled data and
large-scale weakly-labeled data from the query-product click graph.
Moreover, the proposed QUEACO NER model can significantly out-
perform the existing state-of-the-art baselines; (3) We propose the
QUEACO AVN module that uses aggregated query to attribute be-
havioral data to build the connections among queries, surface form
attribute value, and canonical form value. The proposed QUEACO
AVN module can effectively normalize the surface form values with
spelling errors, spelling variants, and abbreviations problems.

2 PRELIMINARIES
In this section, we introduce some preliminaries before detailing the
proposed QUEACO framework, including the problem formulation
and the query NER base model.
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2.1 Problem Formulation
2.1.1 QUEACO Named Entity Recognition. We firstly introduce the
task definition for the QUEACO NER.
NER Given a user input queryXi= [𝑥1, 𝑥2, ..., 𝑥𝑀 ] with𝑀 tokens,
the goal of NER is to predict a tag sequence Yi= [𝑦1, 𝑦2, ..., 𝑦𝑀 ]. We
use the BIO [24] tagging strategy. Specifically, the first token of an
entity mention with each entity type 𝐶𝑜 ∈ 𝐶 (𝐶 is the entity type
set) is labeled as B−Co; the remaining tokens inside that entity
mention are labeled as I−Co; and the non-entity tokens are labeled
as O.
Strongly-Labeled and Large Weakly-Labeled Setting For
our query NER, we have two types of data: 1) strongly-labeled
data 𝐷𝑙 = {(X𝑙

𝑖
,Y𝑙

𝑖
)}𝑁𝑙

𝑖=1, which is manually annotated by human
annotators; 2) large-scale weakly-labeled data𝐷𝑤 = {(X𝑤

𝑖
,Y𝑤

𝑖
)}𝑁𝑤

𝑖=1 ,
where 𝑁𝑙 ≪𝑁𝑤 . The goal is to borrow treasures from large-scale
noisy weakly-labeled data to further enhance a supervised NER
model trained on the strongly-labeled data.

2.1.2 QUEACO Attribute Value Normalization. For each query
Xi= [𝑥1, 𝑥2, ..., 𝑥𝑀 ] with𝑀 tokens, QUEACO NER predicts a tag se-
quence Ỹi= [𝑦1, 𝑦2, ..., ˜𝑦𝑀 ]. Given a entity type 𝐶𝑜 ∈ 𝐶 (e.g., brand)
and the NER prediction Ỹi, we can extract the query term X𝐶𝑜

𝑖
as

the surface form attribute value for the entity type𝐶𝑜 . Assume that
we have a diverse set of canonical form product attribute values
V for the entity type 𝐶𝑜 . For each canonical form attribute value
𝑣 ∈ V, we can define the relevance given the query X𝑖 as

𝑃 (𝐶𝑜 = 𝑣 |X𝑖 ) =
∑
𝑑∈𝐷 𝑛(𝑑,X𝑖 )𝟙(𝑑𝐶𝑜

= 𝑣)∑
𝑑∈𝐷 𝑛(𝑑,X𝑖 )

where 𝑛(𝑑,X𝑖 ) is the number of total clicks on the product 𝑑 of the
the searches using query X𝑖 in a period of time, such as one month.
And 𝐷 is the set of all products. 𝟙(𝑑𝐶𝑜

= 𝑐) indicates whether
the product 𝑑 is indexed with the value 𝑐 for the entity type 𝐶𝑜 .
In a nutshell, we quantify the query-attribute relevance using the
query-product relevance and the product-attribute membership.
The query-product relevance is measured by number of clicks in
the query logs, which can be viewed as the implicit feedback from
customers. Finally, we can get the most relevant attribute value
of the entity type 𝐶𝑜 by argmax 𝑃 (𝐶𝑜 = V|X𝑖 ) as the normalized
canonical form for the surface form attribute value X𝐶𝑜

𝑖
.

2.2 Query NER Base Model
The recent emergence of the pre-trained language models (PLMs)
such BERT [11] has achieved superior performance on a variety of
public NER datasets. However, existing query NER works [5, 10,
21, 48] still rely on the shallow deep learning models (e.g., BiLSTM-
CRF) while not equipping with the powerful PLMs.

WhyPLMs are not deployed for existing queryNERworks?
Due to labeled data scarcity in user queries, previous query NER
works can only rely on the noisy distant supervision data for model
training. In such a condition, using the powerful mPLMs as the
encoder has even worse performance than a shallow Bi-LSTM for
the query NER [5]. Liang et al. [31] have found that the PLM-based
NER models are easier to overfit the noises from the distant labels
and forget the general knowledge from the pre-training stage. On
the other hand, distant supervision based methods for NER [5, 45]

usually underperform, which cannot meet the high performance
requirement for query NER used by various downstream applica-
tions in product search like retrieval and ranking. To tackle the
issue, we target a different query NER setting, which leverages
some strongly-labeled human-annotated data to train a more reli-
able PLM-based NER model and uses the weakly-labeled data from
the distant supervision to further improve the model performance.
To meet the strict latency constraint, we choose DistilmBERT [43]
as the base NER model and we do not add the CRF layer.

3 QUEACO
In this section, we firstly give an overview of how weakly-labeled
behavior data contributes to both the query NER and AVN and then
detail the two components for QUEACO, respectively.

3.1 Overview
Figure 2 shows an overview of QUEACO. At a high level, QUEACO
leverages weakly-labeled behavior data for both the query NER and
AVN. For QUEACO NER, we have the strongly-labeled data and
the large-scale weakly-labeled data for training. Specifically, the
QUEACO NER has two stages: the weak supervision pretraining
stage and the finetuning stage. 1) In the pretraining stage, we adopt
a novel teacher-student network where the teacher network is dy-
namically adapted based on the feedback from the student network.
The goal is to encourage the teacher network to generate better
pseudo labels to refine the weakly-labeled data for improving the
student network’s performance. 2) After the pretraining stage, we
continue to finetune the student network on the strongly-labeled
data as the final model. For QUEACO AVN, we extract the surface
form attribute values based on the NER predictions and leverage
the weakly-labeled query-to-attribute behavior data to transform
them into the canonical forms.

3.2 QUEACO Named Entity Recognition
3.2.1 Model architecture. Teacher-Student Network Before in-
troducing the QUEACO NER model, we give some preliminary of
the teacher-student network of self-training [23, 56]. Self-training
stands out among semi-supervised learning approaches, in which a
teacher model produces pseudo-labels for unlabeled samples, and a
student model learns from these samples with generated pseudo-
labels. We give the mathematical formulation of self-training in
the context of NER. Let 𝑇 and 𝑆 respectively be the teacher and
student network, parameterized by 𝜽𝑇 and 𝜽𝑆 . We use 𝑓 (X;𝜽𝑇 ) and
𝑓 (X;𝜽𝑆 ) denote the NER predictions of the query X for the teacher
and student, respectively. 𝑓 (X;𝜽𝑇 ) can be either soft or converted to
hard pseudo labels. Then the knowledge transfer is usually achieved
by minimizing the consistency loss between the two predicted dis-
tributions from the teacher and the student: L(𝑓 (X;𝜽𝑇 ), 𝑓 (X;𝜽𝑆 )).

Pseudo &Weak Label Refinement Weakly-labeled data suffers
from severe incompleteness that the overall span recall is usually
very low. Therefore, it is natural to use self-training to annotate
the missing labels of the weakly-labeled data. The pseudo labels
make up the missing tags for the weak labels, and meanwhile weak
labels can provide high precision tags to restrict pseudo labels.
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Finetuned 
Student
Network

Strong labels

Stage 2: finetune

Strong labels

Interaction between queries, surface form value, 
canonical form value
NER prediction: lg smart tv 32, product value: LG, Television, 32 inch
NER prediction: womans socks, product value: women, socks
NER prediction: trixie cat litter tray bag 49x59, product value: Trixie, 
waste bag, 49x59 cm

Surface form Product type Canonical form
32 Television 32 inch

49x59 waste bag 49x59 cm

womans socks women

QUEACO NER QUEACO AVN

Stage 1: Pretrain

Figure 2: An overview of the proposed framework QUEACO, showing howweakly behavioral data contributes to the two inter-
dependent stages of QUACO. Entity labels: Brand, ProductLine, Size, ProductType, namedPersonGroup, Color, Audience.

For each weakly-labeled sample X𝑤
𝑖
= [𝑥𝑤1 , 𝑥

𝑤
2 , ..., 𝑥

𝑤
𝑀
], we con-

vert the soft predictions of the teacher network into the hard pseudo
labels, i.e., Y𝑝

𝑖
= argmax 𝑓 (X𝑤

𝑖
;𝜽𝑇 )= [𝑦𝑝1 , 𝑦

𝑝

2 , ..., 𝑦
𝑝

𝑀
]. Additionally,

we have weak labels Y𝑤
𝑖

== [𝑦𝑤1 , 𝑦
𝑤
2 , ..., 𝑦

𝑤
𝑀
] that partially annotate

the samples, which can be used to further refine the pseudo labels.
We maintain the weak labels of the entity tokens and replace the
weak labels of the no entity tokens with the pseudo labels. Then
the refined pseudo labels Y𝑟

𝑖
== [𝑦𝑟1, 𝑦

𝑟
2, ..., 𝑦

𝑟
𝑀
] are generated by:

𝑦𝑟𝑗 =

{
𝑦
𝑝

𝑗
, if 𝑦𝑤

𝑗
= O

𝑦𝑤
𝑗
, otherwise

QUEACOTeacher-StudentNetwork Prior teacher-student frame-
works of self-training rely on rigid teaching strategies, which may
hardly produce high-quality pseudo-labels for consecutive and in-
terdependent tokens. This results in progressive drifts on the noisy
pseudo-labeled data provided by the teacher (a.k.a the confirmation
bias [2]). In QUEACO NER, we propose a novel teacher-student
network, where the teacher can be dynamically adapted from the
student’s feedback to adjust its pseudo-labeling strategies, inspired
by Pham et al. [39]. Student’s feedback is defined as the student’s
performance on the strongly-labeled data. Formally, we can formu-
late our teacher-student network as a bi-level optimization problem,

min
𝜽𝑇

L𝑆,𝑙 (𝜽 𝑡+1𝑆 (𝜽𝑇 ))

s.t. 𝜽 𝑡+1𝑆 (𝜽𝑇 ) = argmin
𝜽𝑺

1
𝑁𝑤

𝑁𝑤∑
𝑖=1

ℓ (Y𝑟𝑖 , 𝑓 (X
𝑤
𝑖 ;𝜽 𝑡𝑆 )) .

where ℓ is the cross-entropy loss. The ultimate goal is to mini-
mize the loss of the student 𝜽 𝑡+1

𝑆
on the strongly-labeled data after

learning from the refined pseudo labels Y𝑟
𝑖
, i.e., L𝑆,𝑙 (𝜽 𝑡+1𝑆

(𝜽𝑇 )),
which is a function of the teacher’s parameters 𝜽𝑇 . 𝑓 (X𝑤

𝑖
;𝜽 𝑡

𝑆
) is

the prediction logits of the student network on the weakly-labeled
sample X𝑤

𝑖
. By optimizing the teacher’s parameter in light of the

student’s performance on the strongly-labeled data, the teacher can
be adapted to generate better pseudo labels to further improve stu-
dent’s performance. This bi-level optimization problem is extremely
complicated, but we can approximate the multi-step argmin𝜽𝑆 with

one step gradient update of 𝜽𝑆 . Plugging this into the constrained
optimization problem leads to an unconstrained optimization for
the teacher network learning. This gives rise to the alternating op-
timization procedure between the student and the teacher updates.

3.2.2 Model Training. Student Network The student network is
trained with refined pseudo-labeled data Y𝑟

𝑖
in order to move closer

to the teacher,

LS =
1
𝑁𝑤

𝑁𝑤∑
𝑖=1

ℓ (Y𝑟𝑖 , 𝑓 (X
𝑤
𝑖 ;𝜽𝑆 ))

We update student network parameter 𝜽𝑆 with one step of gradi-
ent descent. In our proposed framework, the feedback signal from
the student network to the teacher network is the student’s per-
formance on the strongly-labeled data. We use the student loss
on the strongly-labeled data to measure the performance before
the update (𝜽 𝑡

𝑆
) and after the update (𝜽 𝑡+1

𝑆
, learning on the refined

pseudo-labeled data),

L (𝑡 )
𝑆,l =

1
𝑁𝑙

𝑁𝑙∑
𝑖=1

ℓ (Y𝑙𝑖 , 𝑓 (X𝑙
𝑖 ;𝜽

𝑡
𝑆 )),

L (𝑡+1)
𝑆,l =

1
𝑁𝑙

𝑁𝑙∑
𝑖=1

ℓ (Y𝑙𝑖 , 𝑓 (X𝑙
𝑖 ;𝜽

𝑡+1
𝑆 )) .

The difference between L (𝑡 )
𝑆,l and L (𝑡+1)

𝑆,l , i.e., _meta=L (𝑡+1)
𝑆,l −L (𝑡 )

𝑆,l ,
can be used as the feedback to meta-optimize the teacher network
towards the direction that generates better pseudo labels. If the cur-
rent generated pseudo labels can further boost the student network,
then _meta will be negative, and positive vice versa.

Teacher Network The teacher network is jointly optimized by
two objectives: a typical semi-supervised learning loss Lssl and a
meta learning loss Lmeta:

LT = Lssl + Lmeta .

For the SSL loss, it consists of the supervised loss on the strongly-
labeled data and the regularization loss on the weakly-labeled data.

Lssl = Lsup + Lreg .
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The supervised loss Lsup is defined as

Lsup =
1
𝑁𝑙

𝑁𝑙∑
𝑖=1

ℓ (Y𝑙𝑖 , 𝑓 (X
𝑙
𝑖 ;𝜽𝑇 ))

The regularization loss Lreg alleviates the overfitting of the
teacher by enforcing the prediction consistency between the origi-
nal and augmented weakly-labeled samples.

Lreg = − 1
𝑁𝑤 ∗𝑀

𝑁𝑤∑
𝑖=1

𝑀∑
𝑗=1

𝑓 (𝑥𝑤
𝑖 𝑗
;𝜽𝑇 )
𝜏

log(𝑓 (𝑥𝑤𝑖 𝑗 ;𝜽𝑇 )))

where 𝑓 (𝑥𝑤
𝑖 𝑗
;𝜽𝑇 ) is the prediction logits of the teacher network

on the 𝑗-th token of the 𝑖-thweakly-labeled sampleX𝑤
𝑖
. log(𝑓 (𝑥𝑤

𝑖 𝑗
;𝜽𝑇 ))

is the prediction logits of the corresponding token of the augmented
weakly-labeled sample X̃𝑤

𝑖
and 𝜏 is the temperature factor to control

the smoothness. Here, we do not explicitly augment the sentence
and instead add random Gaussian noises 𝐺 (0,𝝈2) to the BERT
embedding of each token to increase the diversity of the sentence.

The meta loss 𝐿meta for the teacher network is defined as:

𝐿meta =
_meta
𝑁𝑤

𝑁𝑤∑
𝑖=1

ℓ (Y𝑟𝑖 , 𝑓 (X
𝑤
𝑖 ;𝜽𝑇 ))

The performance variation of the student network on the strongly-
labeled data is formulated as the feedback signal _meta to dynami-
cally adapt the teacher network’s pseudo-labeling strategies. The
teacher and student can have the same encoder (e.g., DistilBERT [43]),
or a larger teacher for better prediction (e.g., BERT [11]) and a small
student (e.g., DistilBERT) for fast online production inference.

3.3 QUEACO Attribute Value Normalization
In this section, we discuss two different types of AVN method for
and the product type attribute and general attributes, respectively.

3.3.1 AVN for Product type attribute. E-commerce websites usually
have their own self-defined product category taxonomy, which is
used for organizing and indexing the products. Thus, identifying the
product type of a given query is one of the most critical components
of the query attribute value extraction.

However, there are three challenges in directly normalizing the
surface form product type: 1) some queries do not have explicit
surface form product type while they are implicitly associated with
some product types. For example, as shown in Table 2 case#2, there
is no surface form product type in a movie query “wonder woman
1984”, but the product type of the query is “movie”; 2) many entity
mentions are the hyponyms of product type values. For example,
as shown in Table 2 case#6, for the query “mini pocket detangler
brush”, its surface form product type “detangler brush” is a hyponym
of its product type “hair brush”; 3) the same surface form might
correspond to different product types. For example, the product
type of the query “tote for travel" is “luggage”, but the product type
of the query “mk tote for woman" is “handbag”.

Alternatively, we can get the query-to-productType associations
using the weakly-labeled behavior data. For frequent queries, we
use query search logs to get the product type relevance vector
Ypt
𝑖
=𝑃 (𝐶𝑜 = V|X𝑖 ) of query X𝑤

𝑖
as defined in Section 2.1.2, and

then get the most relevant product types. Given that not all queries

have enough user-behavioral signals, we use this weakly labeled
data 𝐷 = {(X𝑤

𝑖
,Ypt

𝑖
)}𝑁𝑤

𝑖=1 to train a multi-label query classification
model [16, 20, 32] for predicting the product type distribution of
less frequent queries. To meet the latency constraint, we also use
DistilmBERT as the encoder.

Case# Query surface form Behavior-based
1 nike None shoes
2 wonder woman 1984 None movie
3 unicorn None clothes, toys
4 lg smart tv 32 smart tv television
5 patio umbrella patio umbrella umbrella
6 mini pocket detangler brush detangler brush hair brush
7 tote for travel tote luggage
8 mk tote for women tote handbag

Table 2: Case study on surface & behavior-based product
type.

3.3.2 AVN for general attributes. The attribute value normalization
corresponds to the entity disambiguation task in entity linking.
Prior entity linking works for search queries [3, 9, 46] leverage
additional information, such as knowledge base and query log, and
search results. Inspired by this, we propose to extract common
surface form to canonical form mapping based on QUEACO NER
predictions and weakly-labeled query-to-attribute associations.

We use the entity type “brand” 𝑏 as the example. Using the
method defined in Section 2.1.2, we can get the most relevant brand
𝑏𝑖 for the query X𝑤

𝑖
by aggregating the query search logs. Then

we can associate surface form brand 𝑋
𝑤,𝑏
𝑖

and the most relevant
behavior-based brand 𝑏𝑖 through the query X𝑤

𝑖
. Given a surface

form brand value𝑚 and a canonical form brand value 𝑣 , we can
define the mapping probability between them as,

𝑃 (𝑣 |𝑚) =
∑𝑁𝑤

𝑖
𝟙(𝑋𝑤,𝑏

𝑖
=𝑚,𝑏𝑖 = 𝑣)∑𝑁𝑤

𝑖 𝟙(𝑋𝑤,𝑏
𝑖

=𝑚)
.

However, we find the same surface form can be normalized
to different canonical forms depending on the query context. For
example, as shown in Table 2 case#3 and #4, the same surface form
brand “apple” can bemapped to “apple barrel” given the query “apple
craft paint”, and “Apple computer” given the query “apple macbook
pro”. The finding is consistent with the recent embedding-based
entity linking works [1, 49]. However, due to the strict requirement
on the inference latency and very high request volume, it is hard to
directly apply the current state-of-the-art embedding-based entity
disambiguation models, which use the context embedding for the
candidate ranking, to the query side [1, 14, 49, 53, 54]. Alternatively,
we simplify the setting by using query product type as the context
of the query. We then define the probability of one surface form
value 𝑚 conditioned on canonical form attribute value 𝑣 , given
product type 𝑝 as:

𝑃 (𝑣 |𝑚, 𝑝) =
∑𝑁𝑤

𝑖
𝟙(𝑋𝑤,𝑏

𝑖
=𝑚,𝑏𝑖 = 𝑣, 𝑌

pt
𝑖

= 𝑝)∑𝑁𝑤

𝑖
𝟙(𝑋𝑤,𝑏

𝑖
=𝑚,𝑌

pt
𝑖

= 𝑝)
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Case# Query entity surface form canonical form
1 lg smart tv 32 size 32 32 inch
2 fish tank 32 size 32 32 gallon
3 apple craft paint brand apple apple barrel
4 apple macbook pro brand apple Apple computer
Table 3: Case study on surface & canonical value.

4 EXPERIMENTS
4.1 QUEACO query NER
4.1.1 Data Description. We collect search queries from a real-
world e-commerce website and construct two datasets: (1) strongly-
labeled dataset, which is human annotated, and (2) weakly-labeled
dataset, which is generated through the partial query tagging, as
shown in Table 1. The statistics of the strongly-labeled and the
weakly-labeled datasets are shown in table 4 and table 5. The de-
tails of these datasets are shown below:

• We split the entire dataset into train/dev/test by 90%, 5%,
and 5%. The size of strongly-labeled and the weakly-labeled
training data are 677K and 17M. The weakly-labeled dataset
is more noisy and is more than 26 times bigger than the
strongly-labeled dataset.

• The strongly-labeled data contains 12 languages: English
(En), German (De), Spanish (Es), French (Fr), Italian (It),
Japanese (Jp), Chinese (Zh), Czech (Cs), Dutch (Nl), Polish
(Pl), Portugal (Pt), Turkish (Tr). The weakly-labeled dataset
does not have Zh, CS, NI, and PI languages.

• The non-O %coverage for the strongly-labeled dataset is
98.31%, and there are 13 non-O types. However, the non-O
%coverage for weakly-labeled data is 43.21%, and there are
11 non-O types, indicating the weak labels suffer from severe
incompleteness issues. The incomplete annotation is due to
the exact string matching between query span and product
attribute values [36]. Table 5 also presents the precision and
recall of weak label performance on an evaluation golden
set. In particular, the overall recall is lower than 50, which is
consistent with the non-O %coverage. The low recall issue
is even more severe for low-resource languages, like Jp, Pt,
and Tr. At the same time, the weak labels also suffer from
labeling bias since the overall precision is lower than 80%.

Dataset #Train #Dev #Test # Non-O Type Non-O %Coverage
En 256571 14193 14269 13 98.87
De 98980 5442 5473 13 95.49
Es 63844 3600 3488 13 99.05
Fr 79176 4383 4504 13 98.91
It 52136 2933 2867 13 99.04
Jp 77457 4422 4365 13 98.65
Zh 22467 1238 1247 13 98.51
Cs 4430 272 252 13 93.66
Nl 8562 423 478 13 97.09
Pl 4489 251 229 13 92.19
Pt 4467 273 247 13 99.45
Tr 5093 267 274 13 99.52

Total 677672 37697 37693 13 98.31
Table 4: The data statistics of strongly-labeled NER dataset.

Dataset #Train # Type %Coverage Span Precision Span Recall
En 14144225 11 42.64 78.50 47.53
De 2004144 11 48.55 83.18 52.35
Es 322435 11 45.79 82.24 51.32
Fr 504309 11 49.00 81.15 51.56
It 475594 11 48.87 81.69 50.82
Jp 241078 11 20.80 67.67 25.53
Pt 134458 11 33.91 80.83 32.23
Tr 23980 11 32.87 86.12 34.95

Total 17850787 11 43.21 79.80 48.04
Table 5: The data statistics of weakly-labeled NER dataset.
Type and Coverage denote the number of entity type and
the ratio of non-O entity.

4.1.2 Evaluation Metrics. We use the span-level micro precision,
recall and F1-score as the evaluation metrics for all experiments.
For the per language experiment, we only report the span-level
micro F1-score for each language, due to the space limit.

4.1.3 Analysis of the Base Encoder. We benchmark the Distilm-
BERT performance with the baseline models in the query attribute
extraction literature. All RNN experiments use FastText multi-
lingual word embeddings [8] and the TARGER implementation
[6].

• RNNmodels: BiLSTM, BiGRU, BiLSTM-CRF and BiGRU-CRF
models are benchmarked for the Home Depot query NER
model [5].

• BiLSTM-CNN-CRF [22, 34] is the state-of-the-art NER model
architecture before BERT [11, 55].

• DistilmBERT baselines: 1) DistilmBERT (Single) means sepa-
rately finetuning DistilmBERT on the strongly-labeled data
for each single language. 2) DistilmBERT (Multi) means fine-
tuning DistilmBERT on the strongly-labeled data for all lan-
guages.

Method (Span level) Precision Recall F1
BiLSTM 65.66 70.09 67.81
BiGRU 64.35 68.96 66.58

BiLSTM-CRF 71.04 69.36 70.19
BiGRU-CRF 69.45 67.98 68.71

BiLSTM-CNN-CRF 70.33 67.92 69.11
BiGRU-CNN-CRF 67.75 65.40 66.56

DistilmBERT (Single) 71.72 74.16 72.92
DistilmBERT (Multi) 73.33 75.29 74.29

Table 6: Comparison of different encoders.
As shown in Table 6: the DistilmBERT has better performance

than other non-BERT baselines. Furthermore, finetuning Distilm-
BERT with all languages has better performance than training a
separate model for each language.

4.1.4 Discussion on the training data. In this section, we discuss the
use of training data for QUEACO query NER model. We benchmark
our settingwith the baseline in the query NER literature, where only
weakly-labeled data is available. All experiments use DistilmBERT
as the base NER model for a fair comparison.

In Figure 3, we subsample the strongly andweakly-labeled dataset
and we find:
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(a) Span Precision (b) Span Recall (c) Span F1

Figure 3: Size of strongly & weakly labeled data vs. Performance. All results are produced by directly finetuning the Distilm-
BERT model with the subsampled dataset. We subsample 1%, 2%, 5%, 10% and 100% of the 677K strongly-labeled data, and
subsampled 0.1%, 1%, 10% and 100% of the 17M weakly-labeled data. In (a), (b) and (c), span-level precision, recall and micro-f1
are shown.

• The precision and recall of themodel trainedwith theweakly-
labeled data do not change much when the training data size
increases from 10% to 100%. However, both the precision and
recall increase dramatically when size of strongly-labeled
data increases, especially the precision.

• The best precision that weakly-labeled data can achieve is
around 60%. However, 34K strongly-labeled queries can al-
ready achieve 62.27% precision. And the precision reaches
to 72.90% when trained with 677K strongly-labeled queries.
With only weakly-labeled data, the best recall is only around
26%, much lower than that using strongly-labeled data. 7K
strong-labeled data can already achieve 48.78% recall.

The findings are consistent with the conclusion of BOND [31]
that pre-trained language models can easily overfit to incomplete
weak labels. And this explains why the existing query NERworks [5,
10, 21, 48] do not adopt the state-of-the-art pre-trained language
model.

In Figure 4, we show the performance improvement for intro-
ducing weakly-labeled data to different sizes of randomly sub-
sampled strongly-labeled data. It is shown that the smaller strongly-
labeled data, the bigger improvement the weak labels can introduce.
However, the performance improvement is marginal when the
strongly-labeled dataset is sufficient. In section 3.2, we introduce
the QUEACO query NER model to better utilize the weak labels to
further improve the query NER model performance.

4.1.5 Implementation Details of QUEACO. We employ the Dis-
tilmBERT [43] with 6 layers, 768 dimension, 12 heads and 134M
parameters as our encoder. We use ADAM optimizer with a learn-
ing rate of 10−5, tuned amongst {10−5, 2 × 10−5, 3 × 10−5, 5 × 10−5,
10−4}. We search the number of epochs in [1,2,3,4,5] and batch size
in [8, 16, 32, 64]. The Gaussian noise variance 𝝈 is tuned amongst
{0.01, 0.1, 1.0}. The temperature factor for smoothness 𝜏 is tuned
amongst {0.5, 0.6, 0.7, 0.8, 0.9}. The threshold 𝜖 is tuned amongst
{0.5, 0.6, 0.7, 0.8, 0.9}. All implementations are based on transformers
in Pytorch 1.7.0. To alleviate overfitting, we perform early stopping
on the validation set during both the pretraining and finetuning
stages. For model training, we use an Amazon EC2 virtual machine
with 8 NVIDIA A100-SXM4-40GB GPUs, configured with CUDA
11.0.

Figure 4: Size of Strongly Labeled Data vs. Micro span-level
F1. "strongly labeled": a baseline that finetunes Distilm-
BERT with the strongly labeled data, "strongly & weakly la-
beled": a baseline that pretrains Distil-mBERT with weakly
labels and then finetunes it on the strongly labeled data.

4.1.6 Baseline Models. As discussed in section 2.2 and section 4.1.4,
it is evident that the setting of using DistilmBERT as base NER
model and using both strongly and weakly-labeled dataset as train-
ing data, outperforms the other settings. We also conduct baseline
experiments in similar settings to show the effectiveness of the
QUEACO query NER model. All experiments use DistilmBERT as
the base NER model for the fair comparison.
• Supervised Learning Baseline: We directly fine-tune the pre-
trained model on the strongly-labeled data.
• Semi-supervised Baseline

• Self Training: self-training with hard pseudo-labels
• NoisyStudent [51] extends the idea of self-training and dis-
tillation with the use of noise added to the student during
learning.

•Weakly-supervisedBaseline: Similar to QUEACO, theseweakly-
supervised baselines also have two stages: pretrainingwith strongly-
labeled and weakly-labeled data, and finetuning with strongly-
labeled data. We only report stage 2 performance.

• Weakly Supervised Learning (WSL): Simply combining strongly-
labeled data with weakly-labeled data [35].

• Weighted Weakly Supervised Learning (Weighted WSL):
WSLwith weighted loss, where weakly-labeled samples have
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Method (Span level) Precision Recall F1
Supervised Baseline

DistilmBERT (Single) 71.72 74.16 72.92
DistilmBERT (Multi) 73.33 75.29 74.29

Semi-supervised Baseline (Encoder: DistilmBERT)
ST 73.29 75.44 74.35
Noisy student 73.28 75.38 74.32

Weakly-supervised Baseline (Encoder: DistilmBERT)
unweighted WSL 73.81 75.93 74.85
weighted WSL 73.77 75.97 74.85
robust WSL 73.10 75.20 74.14
BOND hard 73.77 75.81 74.78
BOND soft 73.65 75.68 74.65
BOND soft high conf 73.95 76.05 74.98
BOND noisy student 73.97 75.99 74.97

Ours (Student: distillmBERT)
QUEACO (Teacher: distilmBERT) 74.44 76.35 75.38
QUEACO (Teacher: mBERT) 74.48 76.41 75.44
Δ (+0.51) (+0.36) (+0.46)

Table 7: Comparison between QUEACO and baseline meth-
ods on micro span-level F1.

a fixed smaller weight and strongly-labeled samples have
weight = 1. We tune the weight and present the best result.

• Robust WSL: WSL with mean squared error loss function,
which is robust to label noises [13].

• BOND (hard/soft): BOND [31] employs a state-of-the-art
two-stage teacher-student framework with hard pseudo-
labels or soft pseudo-labels [50].

• BOND (soft-high): only uses the soft pseudo-labels, with
high confidence selection for student network training in
the BOND framework.

• BOND (NoisyStudent): applies noisy student [51] to the
BOND framework.

4.1.7 Main results. FromTable 7 and 8, our results obviously demon-
strate the effectiveness of our proposed QUEACO query NERmodel:

• The proposed QUEACO query NER model achieves the state-
of-the-art performance. More specifically, we can improve
upon the best weakly-supervised baseline model by a margin
of 0.4% on micro span-level F1. QUEACO query NER model
with mBERT as the teacher network can further enhance the
model performance.

• We also find weak labels improve by 1.09% w.r.t the best
semi-supervised result, showing the weak labels have useful
information if utilized effectively.

• Table 8 compares the span F1 between the baseline Distilm-
BERT model and the QUEACO query NER model for each
language. We can observe consistent performance improve-
ment for the high resource languages (En, De, Es, Fr, It, Jp).
On the other hand, we observe performance drop for those
low resources languages with a few or no weakly-supervised
data (Cs, Nl, Pl, Tr). Pt is also a low-resource language but
observes significant performance improvement because we
have more than 100k weakly supervised training data for
Pt. We believe we can further improve the performance of
those low-resource languages if more weak supervised data
is collected.

Language Weakly Data available DistilmBERT (Multi) QUEACO
En True 75.42 76.97 (+1.55)
De True 75.26 76.70 (+1.44)
Es True 77.30 77.67 (+0.37)
Fr True 71.56 73.20 (+1.64)
It True 77.88 78.42 (+0.54)
Jp True 65.49 65.88 (+0.39)
Zh False 71.02 72.19 (+1.17)
Cs False 72.61 70.93 (-1.68)
Nl False 75.46 75.30 (-0.16)
Pl False 79.71 79.43 (-0.28)
Pt True 58.24 62.00 (+3.76)
Tr True 72.12 71.80 (-0.32)

Table 8: Comparison between DistilmBERT (Multi) and
QUEACO for each language on micro span-level F1.

4.1.8 Ablation Study.

• QUEACO w/o student feedback Lmeta: use a fixed teacher
network to generate pseudo labels for a student network.

• QUEACO w/o noise: remove random Gaussian noise added
to the BERT embedding when training the teacher network.

• QUEACO w/o weak labels: remove the pseudo & weak label
refinement step, and only use the pseudo labels for student
network training.

• QUEACO w/o finetune: remove stage 2: strong labels fine-
tuning.

As shown in table 9, we find the final finetuning is essential to
QUEACO NER. All components from QUEACO, including student
feedback, random Gaussian noise to the BERT embedding and the
pseudo & weak label refinement, are effective.

Method (Span level) Precision Recall F1
QUEACO w/o student feedback 74.09 76.11 75.09
QUEACO w/o noise 74.18 76.01 75.08
QUEACO w/o weak labels 74.04 75.77 74.89
QUEACO w/o finetune 63.31 66.62 64.92
QUEACO 74.44 76.35 75.38

Table 9: Ablation study.

4.2 QUEACO Attribute Value Normalization
4.2.1 Product type AVN. In the query NER, the span-level micro
F1-score for product type is only 77.12%. The performance for
NER-based product type value extraction will be even worse, since
many surface forms cannot be normalized. In Table 10, we show
the product type precision, recall and F1 of the multi-label query
classification model, as described in section 3.3.1, on a golden set.
We can conclude the query classification approach, trained with
weakly-labeled data, is more suitable to product type attribute
extraction than query NER.

4.2.2 AVN for other attributes. In Table 11, we show some attribute
normalization result for brand, color and size attributes, using our
proposed method. We can see that our proposed method is effective
in finding common surface attributes, including:

• spelling error: brand “Michael Kors” is often misspelled as
“Micheal Kors”, “Levi’s” is often misspelled as “levi”;

• spelling invariants: for example, “3 by 5” and “3x5” are dif-
ferent variants with the same meaning.
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Country Eval Data Size Precision Recall F1
USA 2746 85.13 81.1 83.08
UK 2590 85.44 85.71 85.58
Canada 2705 85.07 86.41 85.73
Japan 2151 85.2 80.06 82.55
Germany 2254 85.01 88.54 86.74

Table 10: Product type attribute value extraction perfor-
mance.

• abbreviation: for example, “mk” is the abbreviation for “Micheal
Kors”, “wd” is the abbreviation for “Western Digital”, “in” in
the mention “8 in” is the abbreviation for unit “inches”.

attribute surface form product type canonical form
size 3 by 5 rug 3x5
size 2 pack air filter Value Pack (2)
size 28 foot ladder 28 Feet
size 10.5 inch screen protector 10.5 Inches
size 8 in toy figure 8 inches
color golden belt Gold
color turquoise dress blue
color navy blue dress blue
brand levi underpants Levi’s
brand mk watch Michael Kors
brand Micheal Kors watch Michael Kors
brand wd computer drive Western Digital

Table 11: QUEACO attribute normalization result.

5 QUEACO ONLINE DEPLOYMENT
5.1 Online End-to-End Evaluation
We conducted an end-to-end evaluation of QUEACO on real-world
search traffic. We have two evaluation metrics: span-level preci-
sion and token-level coverage. For span-level precision, we resort
to a crowdsourcing data labeling platform called Toloka1 and the
reported overall precision of the QUEACO system is 97%. Since the
query attribute value extraction is an open-domain problem, the
human annotators cannot verify the recall of the extracted attribute
spans. Therefore, we calculate token-level coverage, i.e., the per-
centage of tokens annotated by QUEACO, as an approximation of
recall. The token-level coverage increased by 38.2% compared to
the current system.

5.2 Application: Extracted Attribute Value for
Product Reranking

To validate the effectiveness of QUEACO signal on the product
search system, we design a downstream task, product reranking,
whose goal is to rerank the top-16 products based on their rele-
vance to the query intent. Specifically, we first use QUEACO to
extract attributes for the product search queries. Then, we generate
boolean features, such as is pt match, is brand match, based on the
attribute values of queries and products. We refer to these boolean
features as QUEACO features. We then train two learning-to-rank
(LTR) models: one model uses QUEACO features while the other
does not. All other features, settings and hyperparameters of these
two models are the same. To compare these two models, we use
NDCG@16, which is the normalized discounted cumulative gain
1https://toloka.yandex.com

(NDCG) score for the top 16 products of the search result. We con-
ducted online A/B experiments for this reranking application in
four countries: India, Canada, Japan, and Germany. On average, we
improve the NDCG@16 by 0.36%.

6 RELATEDWORK
6.1 E-commerce Attribute Value Extraction
Most of the previous works on e-commerce attribute value extrac-
tion focus on extracting surface-form attribute values from product
titles and descriptions. Some early machine learning works formu-
late the task as a (semi-) classification problem [12, 40]. Later, several
researchers [37, 41] employ a sequence tagging formulation and
adopt the CRF model architecture. With the recent advances in deep
learning, many RNN-CRF based models are applied to the sequence
tagging task [18, 22, 34], and have achieved promising results. Fol-
lowing this trend, recent works on the product attribute value
extraction task [36, 52, 58] also adopt variants of the BiLSTM-CRF
model architecture. In addition, some recent studies have explored
BERT-based [11] Machine Reading Comprehension (MRC) [52] and
Question & Answering (Q&A) [47] formulation.

Query attribute value extraction works [5, 10, 21, 48] also employ
the sequence tagging formulation and adopt BiLSTM-CRF model
architectures as well as its variants. Recent works [5, 48] utilize
large behavioral-based data to generate partial query tagging as
distant supervision to train the NER model, and they also explore
data augmentation and active learning to deal with the data quality
issues.

6.2 NER with Distant Supervision
To alleviate human labeling efforts, various approaches such as
transfer learning [38], semi-supervised learning [4], and weakly-
supervised learning [59] are emerging and widely applied to low-
resource NLP tasks [26, 33, 57], e.g., sentiment classification [27–30],
information extraction [17, 25, 44], etc. Specifically, distant supervi-
sion is a type of weak supervision, and is automatically generated
based on some heuristics, such as matching spans of unlabeled
text to a domain dictionary [31, 45]. Existing works on NER with
distant supervision [31, 45] mainly focus on the setting that can
only access distant supervision. Besides, most existing query NER
works [5, 48] only rely on the distant supervision, generated from
partial query tagging, for NER model training.

However, in some cases both strongly-labeled data and a large
amount of distant supervision are available. The strongly-labeled
data, though expensive to collect, is validated to be critical to boost
distant supervised NER performance [19].

7 CONCLUSION
This paper proposes to utilize the weakly-labeled behavioral data
to improve the named entity recognition and attribute value nor-
malization phases of query attribute value extraction. We conduct
extensive experiments on a real-world large-scale E-commerce
dataset and demonstrate that the QUEACO NER can achieve the
state-of-the-art performance and the QUEACO AVN effectively
normalizes some common customer typed surface forms. We also
validate the effectiveness of the proposed QUEACO system for the
downstream product reranking application.
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