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ABSTRACT
Query Parsing aims to extract product attributes, such as color,
brand, and product type, from search queries. These attributes play
a crucial role in search engines for tasks such as matching, ranking,
and recommendation. There are two types of attributes: explicit
attributes that are mentioned explicitly in the search query, and
implicit attributes that are mentioned implicitly. Existing works
on query parsing do not differentiate between explicit query pars-
ing and implicit query parsing, which limits their performance in
product search engines. In this work, we demonstrate the critical
importance of implicit attributes in real-world product search en-
gines. We then present our solution for implicit query parsing at an
e-commerce product search engine, which is a unified framework
combining recent advancements in knowledge graph technologies
and customer behavior analysis. We demonstrate the effectiveness
of our proposal through offline experiments on search log data. We
also show how to use the framework on an e-commerce search
engine to improve customers’ shopping experiences.
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1 INTRODUCTION
Product Search Engines are a crucial component of online shopping
websites, such as Amazon, eBay, etc. Unlike in-store shopping,
online customers rely on product search to find what they need.
According to a recent study on an e-commerce search engine, over
90% of customers base their shopping choices on the results of the

This work is licensed under a Creative Commons Attribution
International 4.0 License.

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9408-6/23/07.
https://doi.org/10.1145/3539618.3591858

|   Confidential

“iphone 14”

“productLine:iphone”
“Model:14”

“brand:apple”
“operating_system:ios”

“complements: phone case”
“substitute_brand: samsung”

Implicit

Explicit
Query Parsing Product RankingCustomer Query

Figure 1: Query Parsing is the entry point of modern prod-
uct search engine. The explicit and implicit attributes for
product search queries are critical for product ranking and
recommendation.

product search engine. In other words, people start their online
shopping journey with the product search engine.

Query Understanding (QU) is the most critical component of
modern product search engines, serving as the entry point for
search (Fig. 1). QU models extract attributes from the customers’
query, such as color, brand, etc., and the search engine relies on
these attributes for ranking, recommendation, etc. For example,
query intent description from query parsing can be used to improve
exploratory search, and QU features can be combined with behavior
features for product ranking [5].

Existing query parsing models primarily focus on extracting
explicit attributes from search queries. In our previous work [6],
we used weakly supervised data to build an industry-scale explicit
query parsing framework for an e-commerce search. However,
customer queries in product search engines are usually short, con-
taining only three to four words on average. Customers trust the
search engine to understand their implicit intents and tend to omit
important concepts such as brand or author if they are implied by
other elements in their query. This makes it harder for the search
engine, as only 1% of customers type in "apple" when searching for
"iPhone" or "MacBook Air." The lack of information in the query
limits the power of the product search engine.

Implicit attributes, in contrast to explicit attributes, are attributes
that are not explicitly mentioned but can be inferred from the query.
For example, the query "iPhone 14" has the explicit attributes of
product line "iPhone" and model number "14," but also has implicit
attributes such as brand "Apple" and operating system "iOS." Accord-
ing to our experiments on an e-commerce search, 84% of product
search queries contain high-confidence implicit information. How-
ever, customers typically do not mention this information in their
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Example Freq.
macbook air m2 56.9
iphone 93.1
macbook 28.7
apple macbook air m2 1
apple macbook 1
apple iphone 1

Attribute Implicit
Brand 54.8%
Color 94.1%
Author 92.2%
Genre 99.1%

Table 1: The left table compares the relative frequency of
brand queries versus non-brand queries. The right table com-
pares the percentage of queries that have implicit attributes.

search query keywords. Noticing that, in most e-commerce systems,
such as Amazon, we have a predefined list of product attributes
ontology that shows which attributes belong to which product type.

In this work, we would like to share our year-long effort to build
an industrial solution for implicit query parsing at an e-commerce
search. Our solution is a unified framework that combines recent
advances in knowledge graph and customer behavior analysis. We
show that implicit attributes are critical for query understanding.
Our experiments on offline data demonstrate the effectiveness of
our proposed methods, and we show how to deploy and use the
framework in an e-commerce search to improve shopping experi-
ences.

2 BACKGROUND
2.1 Implicit Attribute
Implicit query attributes are the attributes that belong to a query,
but are not explicitly mentioned in the query keywords. For ex-
ample, the query ‘iPhone 14’ has the explicit attributes of product
line ‘iphone’ and model number ‘14’. However, this query also has
implicit attributes such as the brand ‘apple’ and operating system
‘ios’ as shown in Figure 1.

In Table 1, we analyzed the query frequency from one day of an e-
commerce search logs in August 2022. We calculated the frequency
of queries that contain information about the product line, such
as "macbook" or "iphone." We also calculated the query frequency
of queries with both product line and brand tokens. We observed
that the keywords without brand tokens are 30 to 90 times more
frequent than the queries with a brand token. This observation
suggests that customers do not type all the necessary information
in their search queries and trust the search engine to understand
their implicit intents. As a result, customers tend to omit important
concepts like brand, if they are implied by other elements in the
query. This omission may seem natural to humans, but it makes
the task of the search engine more challenging [4].

Furthermore, we also analyzed the behavior data. We calculated
the queries that do not mention an attribute in the query but whose
actions (such as clicks or purchases) are directed towards one partic-
ular attribute, as detailed in section 3.2. We selected four attributes
for this analysis: brand, color, author, and genre. Table 1 shows
that more than 54% of the queries have a high confidence brand,
even though they do not contain a brand token. For attributes like
color, author, or genre, this number is even higher, exceeding 90%.
Implicit attributes are critical for understanding customer invent
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Figure 2: The query implicit attribute parsing framework at
an e-commerce search.

for product search engine. As a result, in this work, we introduce a
solution in a real product search engine for implicit attribute pars-
ing. Our solution is a unified framework that combines the recent
advance in knowledge graph and customer behavior analysis.

2.2 Problem Formulation
Given a query 𝑞 with tokens 𝑡0, 𝑡1, .., 𝑡𝑘 , where 𝑘 is the number of
tokens in the query. Let 𝐴 = 𝑎0, 𝑎1, .., 𝑎𝑛 be the universal set of
attributes, where 𝑛 is the total number of attributes in the product
catalog. The problem of explicit query parsing is to determine
the corresponding attribute for each token, such that: 𝑃𝑒 (𝑡𝑖 ) = 𝑎𝑖 ,
where 𝑃𝑒 is a function that maps token 𝑡𝑖 to its corresponding
attribute 𝑎𝑖 , and 𝑎𝑖 ∈ 𝐴. In contrast, implicit query parsing aims to
determine the values for every attribute in 𝐴, whether the attribute
is explicitly mentioned in the query or not. Thus, we seek to find
the implicit attribute parsing function 𝑃𝑖 for 𝑞: 𝑃𝑖 (𝑞) = 𝑣0, 𝑣1, ..., 𝑣𝑛,
where 𝑣𝑖 ∈ 𝑉𝑎𝑖 represents a value of the attribute 𝑎𝑖 . 𝑉𝑎𝑖 is the set
of possible attribute values for 𝑎𝑖 . For example, if 𝑎𝑖 is the attribute
color, then 𝑣𝑖 ∈ 𝑉𝑎𝑖 would be the set of colors.

3 METHOD
In this section, we describe our framework for implicit query pars-
ing. Figure 2 illustrates the overall framework of our solution. The
input to the system is the customer query "iPhone 14," and the out-
put is a list of implicit attributes: ‘brand: Apple’, ‘operating system:
iOS’, ‘accessory: phone case’, and ‘substitute brand: Samsung’.

There are three components in this solution: (1) An explicit query
parsing model that extracts the attributes mentioned explicitly
in the search query. (2) An attribute behavior inference model
that uses query behaviors to determine the attributes with high
click/purchase frequency in history. (3) A knowledge graph-based
model that infers implicit attributes from the explicit attributes in
an attribute graph. In the following sections, we will elaborate on
each of these components in detail.

3.1 Explicit Attribute Parsing
Query Attribute Parsing is the task of extracting product attributes
from search queries. For instance, given the query "nike shoes," the
Query Attribute Parsing model identifies "nike" as a brand token
and "shoes" as a product type. To accomplish this, we have designed
a Transformer-based Query Parsing Model.

We utilized human-labeled data for training the model. The
data comprises of 12 different languages and over 600,000 queries,
along with their ground truth tokens. We employed a multilingual
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Transformer Model to handle the language-agnostic input and used
the Transformer embeddings as the input for the final classification
layer. Subsequently, each token is assigned a classification label to
represent the attribute it belongs to. For further details regarding
our explicit attribute parsing framework, please refer to [6].

3.2 Aggregation Actions for Attribute Parsing
One assumption in our query parsing approach is that if a signifi-
cant majority of customer actions are directed towards a particular
attribute, then that attribute is likely to be relevant to the query.
For example, in the query "iphone 14," after aggregating one year
of query to product clicks data, we found that 95% of clicks were
on products with the brand "apple." This indicates that "apple" is
one of the implicit attributes for "iphone 14."

To formally predict the relevance of each attribute value to a
given query, we use three customer actions: clicks, purchases, and
add to cart. We aggregate the number of these actions for each
query and corresponding product over a year’s worth of data. Let
𝐴 = 𝑎0, 𝑎1, . . . , 𝑎𝑛 be the universal set of attributes, where 𝑛 is the
number of attributes in the product catalog, and let 𝑣𝑖 ∈ 𝑉𝑎𝑖 be a
predefined attribute-value pair for a given query 𝑞. We define the
confidence of the attribute value 𝑣𝑖 for the query 𝑞 as:

𝐹 (𝑞, 𝑣𝑖 ) =
∑
𝑐∈𝐶 𝑤𝑐𝑁𝑐 (𝑞, 𝑝𝑣𝑖 )
𝑁𝑎
𝐼
(𝑞, 𝑝𝑣𝑖 ) + 𝜆𝑞

, (1)

where𝐶 is the set of actions taken for the query-to-corresponding-
product relationship. In this work, we only consider three actions,
so𝐶 = {𝑐𝑙𝑖𝑐𝑘, 𝑎𝑑𝑑, 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒}. 𝑁𝑐 (𝑞, 𝑝𝑣𝑖 ) is the number of actions 𝑐
taken for the product that contains the attribute 𝑎 with a value 𝑣𝑖 ,
and 𝑁𝑎

𝐼
(𝑞, 𝑝𝑣𝑖 ) denotes the number of impressions for the query-

to-product relationship. An impression refers to a customer seeing
the product in the search results. The parameter 𝜆𝑞 controls the
smoothing of the confidence score and is typically set to a small
positive value. In production, we set a threshold of 0.9 for the con-
fidence score. If the confidence score is greater than 0.9, we return
the result in production.

In Equation 1, 𝑤𝑐 denotes the weights assigned to each action
in 𝐶 . In this work, we assume a linear relationship between cus-
tomer actions and query attribute relation. So we build a linear
model to estimate the 𝑤𝑐 for each action, and optimize the fol-
lowing objective function: min𝑤𝑐

∑
𝑐 (𝑝𝑟 − (𝑤𝑐𝑎𝑟 ))2, where 𝑐 ∈

{𝑐𝑙𝑖𝑐𝑘, 𝑎𝑑𝑑, 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒} is the set of customer actions, 𝑎𝑟 are the ac-
tion rate of each query product pair in the data, 𝑝𝑟 denotes the
purchase rate, which calculated by number of purchase devided by
the number of impression of that product in a time range. We use
1 year of time range to collect this training data. The estimation
result is 𝑐𝑐𝑙𝑖𝑐𝑘 = 1.05, 𝑐𝑎𝑑𝑑 = 6.86, and 𝑐𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 = 4.51.

However, in practice, we have encountered two limitations with
this method: (1) We can only obtain results for queries with suffi-
cient behavior data. For new queries or queries without behavior
information, we cannot calculate Equation (1). (2) This method is
biased towards the search results and customer behavior, as biases
always exist in ranking systems [5]. For example, if Amazon.com
only sells products from one brand for a particular query, then
the attribute value will be biased towards that brand. To overcome
these limitations, we combine the behavior-based method with a
knowledge graph-based approach.

3.3 Product KG for Attribute Parsing
Knowledge graphs are heavily used by search engines today [1]. In
this work, we generate implicit attributes based on both explicit
attributes and product knowledge. For example, given the query
"iphone 14" with the explicit attribute "iphone," we can check the
knowledge graph and determine that the corresponding attribute,
the operating system, is IOS.

In this work, the product knowledge graph is an attribute relation
graph, as depicted in Fig. 2. We construct this graph by learning
from two data sources in an e-commerce plateform: (1) product
attribute data and (2) query attribute data. The product attribute
data is extracted from the catalog, which contains information
about all the products and their corresponding attributes. Sellers
upload their products and input the corresponding attributes into
our service, which we then automatically correct to ensure data
quality [7]. The query attribute data is collected from customer
search queries and their corresponding explicit attributes. We use
the parsing model introduced in Section 3.1 to obtain each query’s
attributes.

There are thousands of attributes in real product search services,
and hundreds of millions of queries are processed every day. The
sheer size of this data makes processing it prohibitive. However,
the attributes from different product types don’t overlap much
with each other. For example, the attribute "operating system" only
appears in products such as phones or laptops. To address this,
we split the data by product type based on a product knowledge
graph [1].

To determine the relationships between attributes, we employ
a Graph Neural Network (GNN) model, specifically the unsuper-
vised GNN model proposed by Lu et al. [2]. This model generates
embeddings for each attribute by considering the graph structure
and relationships between the attributes. Given the attribute rela-
tion graph 𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of attribute values (e.g.
color:red, brand:nike, etc) and 𝐸 is the set of edges (e.g. brand:apple
and productType:phone will have an edge). We build a GNN model
𝑓 : G → Y to map the graph G to an output Y. The objective
function of our GNN model is:

𝐽 (𝜃 ) = 1
𝑚

𝑚∑︁
𝑖=1

𝐿(𝑓 (𝑥 (𝑖 ) ;𝜃 ), 𝑦 (𝑖 ) ) + 𝜆𝑅(𝜃 ), (2)

where 𝜃 are the parameters of the neural network,𝑚 is the number
of training examples, 𝑥 (𝑖 ) is the input for the 𝑖th example, 𝑦 (𝑖 ) is
the corresponding target output, 𝑓 is the neural network function,
𝐿 is the loss function, and 𝑅 is a regularization term that penalizes
large parameter values to prevent overfitting. The parameter 𝜆
controls the strength of the regularization term. In our experiment,
we choose these parameters follow the ones in [2]. The GNN model
is trained on large-scale attribute graph data, with the objective of
predicting relationships between attributes. These relationships are
derived from the co-occurrence of attributes in the same product or
query, and we used more than 100million products and 200million
queries in the an e-commerce catalog for training.

Once we get the attribute embeddings from GNN, we then use
these embeddings to construct relationships between attributes.
If the cosine similarity between the embeddings of two attributes
is greater than 0.5, we add an edge between them. During online
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inference, we use the attribute relation graph to obtain implicit
attributes by performing a graph random walk through the graph.
Given the explicit query attributes and behavior-implicit attribute,
we combine the results of the knowledge graph-based implicit
attribute and the behavior-based implicit attribute to produce the
final output, as shown in Fig. 2.

4 OFFLINE EXPERIMENT
Dataset: We sampled approximately 45 million queries from an
e-commerce search logs as query set. We sample these queries
from English language countries and the time range of the sampled
queries expanded from one year.

Following the evaluation strategies outlined in [3], three sub-
evaluation datasets were sampled from three different buckets:
Normal Queries (NQ), the high-frequency queries; Hard Queries
(HQ), queries sampled from the middle tercile based on frequency;
Long tail queries (LTQ), queries have the lowest frequency of the
tercile. These queries were randomly selected from the search logs
in onemonth. Each of the three sets contains 500 queries. The results
for each query were obtained from various methods, and a group of
highly trained human judges was used to assign a binary relevance
grade (correct or wrong) to each returned attribute with respect
to the original query’s intent. This grade was used to calculate the
performance metrics of each method.
Comparising Methods: We choose two baseline methods: KG-IA,
the knowledge graph based implicit attribute. We infer the implicit
attribute based on the explicit attribute and the attribute relations
extracted in KG. Behavir-IA:We use the behavior based method to
extract the implicit attributes. In the experiment, we extracted the
following attributes: author, brand, product type, color, and gender.
Metrics: Two commonly used metrics were adopted for offline
evaluation: Precision and Coverage. Precision is the percentage of
returned implicit attributes that are correct. Coverage denotes the
number of queries that contain the implicit attributes returned by
the method. To compute precision, we utilized human judgments
of relevance. To calculate the coverage, we used real e-commerce
search traffic to see how many queries have implicit attributes
inferred.
Overall Performance: The results for all methods under the two
metrics are presented in Table 2. The proposed solution performed
the best compared to other methods across all three datasets. Specif-
ically, the proposed solution showed a relative performance gain of
11.7% in Precision and 16.1% in Coverage over the best baselines,
on average across the three datasets. In summary, the proposed
solution shows strong performance in extracting implicit attributes,
making it a compelling solution for query understanding services
in product search engines.

5 SYSTEM DEPLOYMENT AND IMPACT
We tested the system within a product search engine for prod-
uct navigation and related query recommendation and proven to
provide better shopping experience (Fig. 3).

Implicit Attribute for Search NavigationWe tested the im-
plicit attribute extraction framework to provide navigational at-
tribute choices. In product search engine, navigation is one of
the critical components. Navigation provides navigational choices

Data Metrics KG-IA B-IA Proposed

NQ Precision 0.85±.01 0.83±.00 1.0±.00
Coverage 0.32±.04 0.62±.04 1.0±.00

HQ Precision 0.84±.01 0.82±.03 1.0±.00
Coverage 0.28±.09 0.53±.05 1.0±.00

LTQ Precision 0.84±.03 0.73±.06 1.0±.00
Coverage 0.20±.04 0.50±.03 1.0±.00

Table 2: Offline Experiment Results. We report the relative
values for all the metrics due to the privacy concern on the
data.

Figure 3: We use implicit attributes to suggest navigation
options for our customers. Customers are able to choose
from different attribute suggestions to narrow down their
search and engage in exploratory shopping.

when customers shop for broad queries. For example, when a cus-
tomer shops for ‘shoes’, we provide brand navigation, color navi-
gation. In this work, we use the proposed framework to generate
implicit attributes for the broad queries as the navigation choices.
We ran an online A/B experiment on the product engine to test the
impact on the user experience.

In the online experiment, users in the treatment group saw the
attribute navigation choices generated by the proposed solution,
while the control group saw the standard search results. We mea-
sured business metrics such as revenue and purchased units, and ob-
served a big increase in both revenue and purchased units (𝑝 < 0.05).
Our system did a better job in providing more relevant results and
significantly improved several business metrics.

Implicit Attribute for Related BrandWe also tested the im-
plicit attribute framework for related search choice generation.
Implicit attributes provide additional attributes that are not men-
tioned in the search query. In this experience, we added the implicit
attribute to the query keywords and generated a new search query.

We ran an online A/B experiment on the an e-commerce search
engine to test the impact on the user experience. In the online
experiment, we rewrote the queries for users in the treatment group
and retrieved a new search in the search engine, targeting only the
queries that had a bad search result (queries with zero search results
returned by the search engine). We tested this system in the an
e-commerce product search engine and measured the zero search
result rate. We observed a big decrease in the zero search result rate
(𝑝 < 0.05). By using the proposed solution, the zero search result
rate defect rate decreased significantly.
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6 CONCLUSION
In this work, we demonstrate empirically that implicit query pars-
ing is critical in real product search engines. We then present our
solution for implicit query parsing in an e-commerce search. Our so-
lution is a unified framework that leverages recent advancements in
knowledge graph reasoning, as well as customer behavior analysis.
The results of our offline data experiment highlight the effective-
ness of our proposed methods. Additionally, we provide insight into
the deployment and utilization of the framework in an e-commerce
search, with the aim of enhancing the shopping experience.
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