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Abstract—Location detection or localization supporting navi-
gation has assumed significant importance in the recent past. In
particular, techniques that exploit cheap inertial measurement
units (IMU), the gyroscope and the accelerometer, have garnered
attention, especially in an embedded computing context. However,
these sensors measurements are quite unreliable, and it is widely
believed that these sensors by themselves are too noisy for
localization with acceptable accuracy. Consequently, several lines
of work embody other costly alternatives to lower the impact
of accumulated errors associated with IMU based approaches,
invariably leading to very high energy costs resulting in lowered
battery life. In this paper, we show that IMUs are sufficient
by themselves if we augment them with known structural or
geographical information about the physical area being explored
by the user. By using the map of the region being explored and
the fact that humans typically walk in a structured manner,
our approach sidesteps the challenges created by noise and
concomitant accumulation of error. Specifically, we show that a
simple coarse-grained machine learning approach mitigates the
effect of the noisy perturbations in the information from our
IMUs, provided we have accurate maps. Throughout, we rely
on the principle of inexactness in an overarching manner and
relax the need for absolute accuracy in return for significant
lowering of resource (energy) costs. Notably, our approach is
completely independent of any external guidance from sources
including GPS, Bluetooth or WiFi support, and is this privacy
preserving. Specifically, we show through experimental results
that by relying on gyroscope and accelerometer data alone,
we can correctly identify the path-segment where the user is
walking/running on a known map, as well as the position within
the path with an accuracy of 4.3 meters on the average using 0.44
Joules. This is a factor of 27X cheaper in energy lower than the
“gold standard” that one could consider based on GPS support
which, surprisingly, has an associated error of 8.7 meters on the
average.

I. INTRODUCTION

Navigation technology is expected to be a 4 billion dollar
industry in itself by 2018 [1]–[11]. Increased demand for
accurate indoor navigation is a combined effect of an increase
in venue-based marketing and government initiatives in devel-
oping positioning systems for public safety and urban security
segments. GPS (Global Positioning Systems) are widely con-
sidered prohibitive because of their energy requirements in the
indoor environments [11].

* Indicate Equal Contribution.

In recent years, low-cost inertial sensor based on accelera-
tors and gyroscopes have emerged as a well-known solution
for navigation in indoor or hybrid indoor-outdoor environ-
ments. The hardware required for inertial navigation is tiny,
light-weight and is very frugal in resource usage. However,
measurements from these sensors are extremely noisy, and
therefore, existing technology utilizing these sensors have
limited applicability due to significant errors.

Since sensor technologies are based on the physical theo-
ries of acceleration, most popular inference techniques with
IMUs (Inertial Measurement Units) are based on numerical
integration, in some form or the other. Numerical integration
typically suffers from accumulated error, including Abbe er-
ror [12]. Because the guidance system is continually adding
detected changes to its previously-calculated positions (see
dead reckoning [6]–[10], [13]), any errors in measurement
are accumulated from point to point. This accumulation leads
to ”drift”, or an ever-increasing difference between where
the system ”thinks” it is located, and the actual location.
Furthermore, IMUs always work with averages. So if an
accelerometer is able to retrieve acceleration once per second,
based on sampling the device will have to work as if it
experienced the same acceleration throughout that second,
although the acceleration could have varied drastically in that
time period. Due to integration, a constant error in acceleration
results in a linear error in velocity and a quadratic error
growth in position. A constant error in altitude rate (gyroscope)
results in a quadratic error in velocity and a cubic error
growth in position [12], [13]. Consequently, it is widely
believed that only accelerometer and gyroscope measurements
are insufficient for accurate navigation.

Due to the significance of the problem and its usefulness
in practice, there has been a flurry of work trying to correct
accumulated errors from sensor measurements by utilizing
additional information from new and independent sensors. A
standard line of thought is to try to integrate additional sensor
information, leading to an information fusion problem, and
rely on Kalman filters [14] or other smoothing models to
reduce errors. However, often, new sensors introduce noise,
and therefore, information fusion using smoothing techniques
fails to work at low signal to noise (SNR) ratio. A common
alternative is to periodically query an independent and accurate
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positioning mechanism to correct these errors. Such position-
ing mechanisms are typically GPS based or used other popular
WiFi based positioning [15], both of which are again often
inaccurate in indoor environments. Communication-based po-
sitioning is further well-known to be expensive from energy
perspective [11], and are further prone to privacy breaches.

In this paper, we argue that trying to rely on noisy IMU
sensors to infer position and movements, with all possibilities
of motions such as arbitrary angle of turns, rotations, and
others, is solving a much harder problem than needed, and
is also unnecessary from a practical perspective. The world
that we live in a quite structured, and imposing this structure
is enough to solve, often mathematically intractable, inverse
problems. We have seen that imposing such real-world struc-
tural priors has led to several breakthroughs in our capabilities
to understand language (text) [16] and images (vision) [17],
which are otherwise very ill-posed and hard mathematical
problems. We believe this is true of navigation and location
detection or localization as well. For example, many of our
environments as well as our walking paths, have a grid-like
structure consisting of straight lines and turns. It is seldom
the case that we walk on a sinusoidal path. For example, we
have the map of the navigating environment, such as a shop-
ping mall beforehand. In this work, we heavily leverage this
structure to obtain an accurate position estimation algorithm
relying only on gyroscope and accelerometer measurements
only.

We show that given the maps of the indoor environment,
indicating all the navigable straight line paths and turns,
the noisy accelerometer and gyroscope measurements are
sufficient for accurate navigation. The key observation we
exploit is that although IMU measurements are very noisy
for complete inference by themselves, they are very accurate
for coarse-grained discrete decisions such as detecting turns.
These coarse-grained decisions with crude distance estimation
over short intervals when combined with a map provided an
accurate position estimation algorithm. Surprisingly, we note
that our inexact approach has quality or error comparable to
GPS, while the later is more expensive by a factor of 27X in
energy.

Our contributions:
• We provide the first algorithm which combines ac-

celerometer and gyroscope measurements with cheap
coarse-grained machine learning along with the map of
the environment, for accurate navigation. We leverage the
prior grid-like structure of the navigating environment to
correct the noisy measurements, without requiring any
additional sensor data. Additional sensory information is
often expensive, which as we show can be completely
avoided.

• The knowledge of the environment can be leveraged
to avoid costly and inaccurate numerical integration,
and instead, we rely on coarse-grained machine learning
based inference such as detecting the type of turns and
distance traveled in short intervals. We further show that
such coarse-grained inference is remarkably accurate with

TABLE I: Energy and accuracy of our method vs GPS on the
map described in Fig. 1

Method Average Error Energy
GPS 8.7m 11.85J

Our Method 4.3m 0.44

machine learning algorithms despite high measurement
errors.

• We provide evaluation using datasets having gold stan-
dard position measurements over 5.35 km with com-
pletely accurate measured distances.

• Our algorithm does not require any communication with
the external environment and hence preserves users pri-
vacy.

• Using the principle of inexactness, we relax the need
of exact estimations but instead, one willing to accept
a good enough solution. In return, we see a significant
reduction in resource lost, -energy consumption in this
case. We contrast our approach with the best known
approach that is widely-used, GPS, in Table I. With
noisy measurements, often using very precision data is
misleading. In such scenarios, coarse-grained information
is more reliable. Similar phenomena occur in signal
processing [18], and is the main reason why inexact
computing shows significant advantages in the context
of machine learning [19]–[23].

II. OVERVIEW OF THE PROPOSED APPROACH AND MODE

We assume that we have the map of the environment
which is modeled as a variant of a ”Manhattan Grid” of Fig.
1c. Such a map is almost always available beforehand. For
example, it is common to have map (or plans) of shopping
malls, large buildings, and campuses. We assume that the
walking paths are straight lines, with turns, not necessarily
right angles, including u-turns. This is not an unrealistic
assumption, as humans usually walk along paths which can
be accurately approximated with a union of reasonably small
straight line segments. Using this scenario, our method allows
us to eliminate costly and inaccurate numerical integration.
Our guess of final position estimation to perform localization,
given the starting point, can be broken down into two major
task: 1) distance estimation along a straight line and 2) turn
estimation. We briefly describe the two tasks.

1.Distance traveled within a path segment: For accurate
position estimation, we should be able to determine the dis-
tance during sufficiently short time intervals of time. Instead
of using numerical integration, we cast this as a regression
problem given the accelerometer measurements over the spec-
ified time interval in a feature space. We show that coarse-
grained regression over short time intervals is significantly
more accurate than numerical integration. (See section IV for
details.)

2. Turn determination: We need to infer, within a rea-
sonably short time window, whether there was a turn. If
there was a turn, we also want to infer the type and angle
of the turn, including about u-turns. We formulate this as a
classification problem given the gyroscope readings over a
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reasonably large time interval. We were able to achieve a
remarkable accuracy of around 90-95% in classifying turns
using non-linear machine learning algorithms. (See section V
for details)

It should be noted that these two tasks with perfect accuracy
are sufficient for position estimation in a Manhattan-like
environment. To estimate distances and turns in that window,
we implement ”sliding window” over time. In a grid like
environments, knowing the distances and the turns accurately
will help locate the final position. However, perfect accuracy
is far from being realistic in the two elemental steps locally.
Moreover, since incorrect estimation gets accumulated, the
error aggregation leads to blow up in errors over time.

The good news: our results show that machine learning
algorithms, especially non-linear classifiers such as random
forests, are significantly accurate for turn estimation with an
accuracy of around 90-95%. Such high accuracy is achievable
because, even though gyroscope measurements are quite noisy,
during turns, there are drastic changes in the signs of angu-
lar acceleration, which can be easily identified by machine
learning to discriminate between different types and angles
of turns. In other words, while the gyroscope measurements
are too noisy for accurate estimation of angular acceleration
there is enough information to discriminate between various
coarse-grained turns.

For distance estimation over a fixed short interval of time,
we observe that machine learning algorithms that operate
in the frequency domain using the Fourier spectrum of ac-
celerometer data are significantly more accurate than those
techniques including numerical integration that operate in the
time domain. Our results demonstrate that we can achieve a
mean error of 7.2m over 15sec time interval compared to
22m during the same time interval achieved by numerical
integration (see Section IV for analysis). However, distance
estimation, as expected, suffers from the problem of error
accumulation over time as it involves aggregating estimates
over small windows. Without periodic corrections, this error
will amplify over longer paths. We show that a simple method-
ology of combining the information in the map indicating the
feasible walking paths and locations of turns, we were able to
correct these errors with remarkable accuracy. The moment
we detect a turn, which matches with the map, with near
perfect accuracy, the error on the user’s location is corrected
to zero. We found that using this simple correction, our final
accumulated average end-to-end position estimation error is
on average 4.3meters.

Organization: We start by describing the environment and
datasets used for evaluations and training machine learning
in Sections III. In Section IV and V, we describe the two
basic pillars of distance and turn determination respectively.
Section VI details our final procedure that integrates the two
approaches with the information from the map for obtaining
the final position.

TABLE II: Distances of Rice University’s Academic Quad.

Dimension Edges - Distance
Horizontal 1-12 78m 12-11 16m 11-10 19m 10-9 50m

Vertical 1-2 31m 2-3 31m NA NA
III. DATA COLLECTION

Our approach relies on supervised machine learning for
distance and turns estimation. We, therefore collected labeled
datasets for training our models from two independent walking
experiments. We describe these datasets next.

A. Source 1: GPS Labeled Data for Distance Estimation

Distance estimation approached by us as a regression
problem requires adequate supervision and comprehensively
labeled data. To automatically generate the ground truth labels
for extensive data we relied on GPS measurement in an
outdoor environment. Fig. 1a describes the place where the
data were gathered. The dataset collected have seven compo-
nents: 3-axis accelerometer readings, location based on GPS
coordinates (3 values), and the timestamp indicating the time
of each reading. The sampling frequency is around 51Hz. The
data was generated by a single user who walked/ran for 9 hours
on 12 different paths in different modes. The data was taken
with an iPhone6s. The walking conditions were varied. This
dataset was primarily used for training the distance estimation
procedure.

We also characterized the error inherent to GPS. For this
purpose, 50 minutes of data were taken in the place mentioned
in Fig 1a. GPS measurements were taken with two iPhones
fixed on the waist. The difference between the two distances
was 4.86 meters on average with 15 seconds interval.

B. Source 2: Data with Exact Labels

We chose the Academic Quad of Rice University as is
shown in Fig. 1. The dataset collected has ten components, 3-
axis gyroscope, 3-axis accelerometer, location based on GPS
coordinates and the timestamps. The sampling frequency is
around 51Hz. Data was collected by two users who walked
for 1 hour and 15 minutes in different modes: fast, slow, run.
The data was taken with two iPhone6s, one for each user. The
dataset contains 100 turns over 45 minutes on the first day,
and 50 turns on the second day. The types of turns include U-
turns and any turn possible on the map. For this case, we do
not rely on GPS-based location labels. Our ground truth was
the actual distance of the grid which is described in Table II.
To exactly label positions and distances, the grid was sampled
with numerous fixed checkpoints. Given the starting point, the
timestamp to reach different checkpoints was recorded to label
the gyroscope and accelerometer data with actual coordinates
of the checkpoints. All our validations, including the final
validation of our end to end algorithm, was performed on this
dataset. Since this dataset has sufficient turn information, it
was also used for training our turn classification ML algorithm
described in Section V.

IV. DISTANCE ESTIMATION IN STRAIGHT LINE

In this section, we describe our process for distance estima-
tion along the straight line. For straight line distance, we used
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(a) Outer Loop of Rice University
Campus

(b) The Satellite-Photograph of
the Academic Quad. (c) The Topographic Map of the Academic Quad

Fig. 1: Maps for the experiment of the work.
TABLE III: Distance Estimation using different machine learn-
ing algorithms and different feature types.

Method Percentage Error Rate (Error in Meters)
Frequency Domain Time Domain

Nearest Neighbors 26.34% (8.18m) 67.68%(20.77m)
Ridge Regression 27.08% (8.39m) 71.23%(22.01m)

Random Forest Regression 23.5% (7.2m) 66.32%(20.46m)
Numerical Integration NA 70% (22m)

accelerometer data. Given accelerometer data over a given
interval of time, typically between turns, we want to estimate
the distance traveled. In theory, this can be easily calculated
using the physics of acceleration, which is a simple numerical
integration. However, noise and sampling approximation from
the accelerometer leads to error aggregation over time. This
noise accumulation leads to very poor accuracy. We take a
different approach and cast it as a machine learning problem
over coarse-grained intervals of time.

The accelerometer data leads to a 3-D time series, which
are the features. This time series is affected by noise. To
reduce noise, we only consider frequencies below 15Hz where
more of the energy from human gait can be found as shown
in [24]. We develop features by transforming this data into the
frequency spectrum. To obtain enough resolutions of signal
frequency, we define k frequency bands on the interval [0,
15Hz], where k is one of the parameters of our model.

We perform a comprehensive study of different machine
learning algorithms including linear and non-linear models
for regression over the data. In our case, we considered
near neighbor, ridge regression, and the random forest. To
understand the effect of noise in both time and frequency
domains we analyzed both cases.

Nearest Neighbor Regression [25] uses the nearest value
in historical data set to the given data as the prediction
value. Ridge Regression [26] build a linear model with an
L2 constraint on the data set and uses the linear model to
do the further prediction for the given data. Random Forests
[27] partitions the data space into smaller regions, and do the
simple regression in each region. Random Forest is powerful
for dealing with nonlinear predictive models.

To test the effectiveness of the machine learning methods,
we use numerical integration as our baseline algorithm using
15 seconds interval as well. The acceleration obtained from the
accelerometer is filtered to reduce noise. Next, we integrate the
data to obtain the average speed during the interval.

Table III provides a summary of the results. We can

clearly see that in the time domain, all the ML methods
including numerical integration performs significantly worse,
compared to methods using Fourier coefficients as features in
the frequency domain. This is expected because of the noisy
nature of the accelerometer data. Walking introduces different
kind of spurious accelerations which are usually noise, and
affects the distance estimation. Noise is easier to identify
in the high-frequency domain. For example, truncating high-
frequency signals does result in significantly better perfor-
mance. From Table III, among machine learning models, we
can see that nearest neighbors method and ridge regression
performed worse, whereas random forest regression performed
best. Even in the time domain, machine learning models are
superior to integration method, although by a smaller margin.
Overall, the best we can obtain is mean error of 7.2m (23.5%
relative) which is significantly superior to standard numerical
integration error of 22m (70% relative). We note that our
results exploit the stability of working in the frequency domain
while numerical integration is a time domain method.

V. ESTIMATING TURNS.

Another critical component of our navigation framework
is the estimation of turns. In particular, at each time, given
the current accelerometers and gyroscope data, estimate (1)
whether the person takes a turn or not, (2) if the person takes
a turn, identify the (coarse-grained) type of the turn: Right
Turn, Left Turn, or U-Turn.

We use gyroscope data for calculating the coarse-grained
turn information. Although, gyroscope data can be used to
exactly compute the angle of the turn with high precision,
the noise in each measurement renders exact estimation is
quite poor. Techniques relying on accurate angle estimation
of turns will also suffer from accumulated errors which grow
cubically with the amount of gyroscope data [28]. We argue
that such fine precision information is not necessary and
in fact is detrimental. We also show that there is enough
discriminative information in gyroscope measurement for near
perfect discrimination between coarse-grained turn categories.
We further show that this coarse-grained information is suffi-
cient for our task. In particular, we cast the turn estimation
problem as classifying (discriminative) categories of turns
given gyroscope measurements as features. The core problem
is to find a function, for mapping the noisy gyroscope data to
a turning class (No Turn, Right Turn, Left Turn, U-Turn).
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TABLE IV: The accuracy for Turning detection and Turn-
ing classification. Both results comes from using Frequency
domain features and Time domain Features. NN (Nearest
Neighbor Method), RF (Random Forest Classification), and
SVM (Support Vector Machines) are used. RF got the best
accuracy on turning detection and turning classification tasks.

Method Turn Detection Accuracy Turn Classification Accuracy
Frequency Time Frequency Time

NN 52% 54% 33% 31%
RF 67% 83% 65% 81%

SVM 72% 95% 69% 90%
Our datasets show that every turn takes around four sec-

onds to finish. We, therefore, break the time series data into
overlapping intervals of four seconds. Increasing the length of
this interval does not affect the results. Now, the classification
problem of turn estimation is formulated as: given gyroscope
measurements, as 3-D time series over 4 second time intervals,
classify whether a turn is present or not. If a turn is present,
then classify whether it is left turn, right turn or a U-turn.

Having time series gyroscope data, we again use the time
and frequency domain features, with high-frequency features
removed, as described in Section IV.

We tested three popular classification algorithms: nearest
neighbor, support vector machine, and random forest classi-
fication on the data set. In the previous section, we already
briefly introduced nearest neighbors method, random forest
methods. SVM (or support vector machines) [29] uses a kernel
function to map the training data point into a high-dimensional
kernel space so that in the kernel space the data is separable
by a hyperplane. In this paper we used Gaussian kernel.

The results are shown in the Table IV. We make the
turning estimation into two steps: Turn Detection and Turn
Classification. (1) in the turn detection step, we detect whether
or not there is a turn, (2) if there is a turn, then we do turn
classification, that classifies the turn into three classes.

From Table IV, we can see that for turn detection step (turn
or no-turn), the SVM (support vector machines) methods can
achieve an average of 95% accuracy by using the time domain
gyroscope data. And from the Table IV, we can see that for
turning classification step, SVM (support vector machines) can
achieve an average of 90% accuracy. Thus, coarse-grained turn
estimation can be performed with very high accuracy.

Note: with turn estimation, we found that time domain
features works better. This is expected because the turning
time is usually short, and hence the frequency domain does
not have sufficient resolution.

VI. LEVERAGING THE MAP TO CORRECT ERRORS: FINAL
ALGORITHM

In this section, we discuss our approach to combine these
two methods with the map information to correct the accumu-
lated errors yield to accurate localization algorithm.

For example, distance estimation in a short interval of 15
seconds has an average error of around 7 meters. A single
turn estimation, although nearly perfect, still can be wrong
with around 0.05 probability. These errors can accumulate
over time. Without map based correction, the average error

was 28.72m, the maximum error is 99m, and the minimum
is 0.222m. This high error is expected without correction as
errors accumulate. On the other hand a simple map based
correction, as we show next, drastically reduces this error.

However, it is possible to correct these errors using the map
information. Define each intersection point on the map as a
vertex and each path between vertices as an edge. We use the
following simple strategy to correct these errors.

Step1 Set the initial position.
Step2 Keep a running window (overlapping) of 4sec time in-

terval. Use the turn classification algorithm in Section V
over these windows. Report all the turns on the gyroscope
data series.

Step3 Do distance estimation between two turns using random
forests as shown in Section IV. Accumulate distance
estimates with 15sec non-overlapping windows.

Step4 Based on the map information, estimate whether a turn
is a valid turn. Given the distance estimate, determine if
an actual turn is in within the error of a predicted turn.
If we do not find an intersection in the vicinity, then
skip this turn. If a turn is found, then correct the current
position (distance estimate correction) to the point of the
intersection.

We tested our method on 200 paths having different varia-
tions as mentioned in section III. The path length ranges from
3 to 60 meters, with an average path length of 357 meters.
The average number of turns in each path is around 6.

Result. For the 200 random paths, all the final edges
were correctly identified in all cases. 100% accuracy for
path identification is quite remarkable. We believe that this is
partly due the fact that coarse-grained turn estimation has near
perfect accuracy with random forest. For the position estimate,
we get an average error of 4.3 meters. The best case error is
0.05 meters, and the worst case error is 11.5 meters. In Fig. 2,
we highlight some results for the final edge of two Random
Paths.

A. Energy Consumption compared to GPS

Error correction based on costly sensors, such as GPS, is
common in practice. However, in addition to being inaccurate,
GPS sensors consumes a significantly larger energy which
drains the battery life of the device. We compare the energy
consumption of our proposed method with GPS. We use a 15s
data to test on both methods. The proposed method requires
mere 0.44J whereas GPS signal in such a short interval needs
11.85J. Therefore, our proposed method consumes 27x less
energy than GPS. In this estimate, we included both the energy
associated with sensors, i.e. accelerometer and gyroscope, as
well as the energy associated with computation. The energy
consumed by the sensors is 0.271311J (61.7% of the total
energy) and the rest (0.3834%) is because of the calculations
involved with our method.

VII. CONCLUSION AND FUTURE WORK

There are three directions to pursue a possible future work.
First, we propose more extensive testing in terms of the
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Fig. 2: (a) Example Random Path 1: 1–14–1–2–15. Final Position (Red Circle) on the edge between 15 and 2. (2) Example
Random Path 2: 3–4–3–2–3. Final Position(Red Circle) on the edge between 4 and 3. (3)Position Localization for Random
Path 1 and Random Path 2. The black circle in the figure means the final position estimated by the proposed method. The red
circle in the figure shows the ground truth location. The error for Random Path 1 is 0.8 meters and the error for Random Path
2 is 4.3 meters.
number of paths and their combinations. Second, we intend
to provide a detailed analysis of the sources of error. Our plan
is to lower the amount of error with 3 meters being our goal.
Finally, we plan to compare energy usage and accuracy with
other competing approaches including WiFi and Bluetooth,
beyond GPS.
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