
Knowledge Graph Reasoning over Entities and Numerical Values
Jiaxin Bai

∗

Department of CSE, HKUST

Hong Kong SAR, China

jbai@connect.ust.hk

Chen Luo

Amazon.com Inc

Palo Alto, USA

cheluo@amazon.com

Zheng Li

Amazon.com Inc

Palo Alto, USA

amzzhe@amazon.com

Qingyu Yin

Amazon.com Inc

Palo Alto, USA

qingyy@amazon.com

Bing Yin

Amazon.com Inc

Palo Alto, USA

alexbyin@amazon.com

Yangqiu Song
†

Department of CSE, HKUST

Hong Kong SAR, China

yqsong@cse.ust.hk

ABSTRACT
A complex logic query in a knowledge graph refers to a query

expressed in logic form that conveys a complex meaning, such as

where did the Canadian Turing award winner graduate from? Knowl-
edge graph reasoning-based applications, such as dialogue systems

and interactive search engines, rely on the ability to answer com-

plex logic queries as a fundamental task. In most knowledge graphs,

edges are typically used to either describe the relationships between

entities or their associated attribute values. An attribute value can

be in categorical or numerical format, such as dates, years, sizes, etc.

However, existing complex query answering (CQA) methods simply

treat numerical values in the same way as they treat entities. This

can lead to difficulties in answering certain queries, such as which
Australian Pulitzer award winner is born before 1927, and which drug
is a pain reliever and has fewer side effects than Paracetamol. In this

work, inspired by the recent advances in numerical encoding and

knowledge graph reasoning, we propose numerical complex query

answering. In this task, we introduce new numerical variables and

operations to describe queries involving numerical attribute values.

To address the difference between entities and numerical values,

we also propose the framework of Number Reasoning Network

(NRN) for alternatively encoding entities and numerical values into

separate encoding structures. During the numerical encoding pro-

cess, NRN employs a parameterized density function to encode

the distribution of numerical values. During the entity encoding

process, NRN uses established query encoding methods for the

original CQA problem. Experimental results show that NRN consis-

tently improves various query encoding methods on three different

knowledge graphs and achieves state-of-the-art results.

∗
Work done during an internship at Amazon.

†
Visiting academic scholar at Amazon.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00

https://doi.org/10.1145/3580305.3599399

CCS CONCEPTS
• Information systems→ Data mining; • Computing method-
ologies→ Semantic networks; Logic programming and an-
swer set programming.

KEYWORDS
knowledge graph, complex query answering, numerical attribute

ACM Reference Format:
Jiaxin Bai, Chen Luo, Zheng Li, Qingyu Yin, Bing Yin, and Yangqiu Song.

2023. Knowledge Graph Reasoning over Entities and Numerical Values. In

Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD ’23), August 6–10, 2023, Long Beach, CA, USA. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3580305.3599399

1 INTRODUCTION
Reasoning over knowledge graphs (KG) is the process of deriving

new knowledge or drawing new conclusions from the existing ones

in the KG [9]. Complex query answering (CQA) is a recently devel-

oped knowledge graph reasoning task, which aims to answer com-

plex knowledge graph queries [15, 24, 25]. As shown in Figure 1, a

complex knowledge graph query, or in short, complex query, targets

finding the entities from the KG such that the logic expression can

be satisfied [15, 24]. The logic expression of a complex query usu-

ally contains multiple terms connected by logic connectives, thus

it is able to carry a complicated meaning. For example, in Figure 1,

the logic form of 𝑞1 includes terms like Win(TuringAward,V) and
operations like conjunctions ∧ and disjunctions ∨, and it carries the
meaning of Find where the Canadian Turing award laureates gradu-
ated from. The complex query answering (CQA) task is considered a

KG reasoning task because it needs to deal with the incompleteness

problem of the KGs. The KGs, like Freebase [8] and YAGO [26],

are typically sparse and incomplete. They often include missing

relations and attribute values, although these missing edges can

be inferred from other edges in the KG. Consequently, subgraph

matching algorithms cannot directly be used to find the answers

that need to be inferred from missing edges and attributes.

Query encoding methods [4, 14, 15, 20, 24, 25, 27, 39] are pro-

posed to address this incompleteness challenge in CQA. In query

encoding methods, queries and entities are simultaneously encoded

into the same embedding space. Then the answers are retrieved

according to the similarity between the query embedding and entity

embedding. In detail, there are two steps in encoding a complex

query. First, the query is parsed into a computational graph as a

ar
X

iv
:2

30
6.

01
39

9v
1

 [
cs

.A
I]

 2
 J

un
 2

02
3

https://doi.org/10.1145/3580305.3599399
https://doi.org/10.1145/3580305.3599399

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Jiaxin Bai, Chen Luo, Zheng Li, Qingyu Yin, Bing Yin, and Yangqiu Song

directed acyclic graph (DAG). Then, the query encoding is itera-

tively computed along the computational graph, by using neural

parameterized logic operations and relational projections. Different

query encoding methods encode their queries into different struc-

tures, and they have different parameterizations for their logic and

projection operations as well. For example, GQE [15] uses vectors,

Query2Box [24] uses hyper-rectangles, and Query2Particles [4]

uses multiple vectors in the embedding space.

On the other hand, numerical values are also important compo-

nents of various knowledge graphs like Freebase [8], DBpedia [7],

and YAGO [26]. Though existing query encoding methods achieve

good performance on complex query answering, they typically

focus only on the relations between entities while being unable

to reasonably deal with attribute values. There are in general two

reasons. First, the query encoding methods are unable to encode the

semantic information of numerical values. For 𝑞2 in Figure 1, to find

its corresponding answers, we need to first encode the semantics

of the year of 1927 such that we can compute the distributions of

the years before 1927. However, existing query encoding methods

can only learn the graph features of 1927, and ignore its numerical

meaning. Second, the existing query encoding method is unable to

describe the distributional changes of values when there are com-

putations and comparisons between numerical values. In Figure 1,

the complex queries 𝑞2, 𝑞3, and 𝑞4 involve numerical comparisons

𝐺𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛 or 𝑆𝑚𝑎𝑙𝑙𝑒𝑟𝑇ℎ𝑎𝑛. Meanwhile, 𝑞4 includes the numer-

ical computation of 𝑇𝑖𝑚𝑒𝑠𝐵𝑦𝑇𝑤𝑜 . As the existing methods only

have relational projections between entities, they are insufficient

to deal with the relations involving numerical values.

To formally define and evaluate the problem of complex query

answering with numerical values, we propose the task of numerical

complex query answering (Numerical CQA). In Numerical CQA, we

extend the existing problem scope to further include the numerical

variables. We also introduce new logic terms expressing numerical

relationships. In Figure 1, the logic terms expressing numerical at-

tributes are underlined. Three example numerical queries are given

in Figure 1, and their definitions will be given in §2. Meanwhile,

we also create the corresponding benchmark dataset to evaluate

the performance of Numerical CQA. To do this, we use three public

knowledge graphs: Freebase, YAGO, and DBpedia.

To address the challenges of reasonably encoding both entities

and numerical values in a query, we propose the Number Reason-

ing Network (NRN) as a solution. In NRN, there are two encoding

phases, which are respectively used for encoding entities and nu-

merical values, following the computation graph. The descriptions

of NRN will be given in §3. Experiment results show that the NRN

can constantly improve the performance on Numerical CQA when

combined with different types of query encoding methods.
1
The

major contributions of this paper are three-fold:

• We propose a new problem of numerical complex query an-

swering (Numerical CQA) aiming at answering the complex

queries that need reasoning over numerical values.

• We create a new benchmark dataset based on three widely

used knowledge graphs: Freebase, Dbpedia, and YAGO, for

evaluating the performance of Numerical CQA.

1
Experiment code available: https://github.com/HKUST-KnowComp/NRN

Table 1: The table for frequent notations with definitions.

Notations Definitions

G The knowledge graph

V The set of knowledge graph vertices in KG

R The set of relations between entities in KG

A The set of attribute types in KG

N The set of numerical values in KG

𝑉𝑎 , 𝑋𝑎 The anchor variables that are known in a KG query

𝑉𝑖 , 𝑋𝑖 The existentially quantified variables in a KG query

𝑟 (𝑉 ,𝑉 ′) Whether the relation 𝑟 holds between𝑉 and𝑉 ′

𝑎 (𝑉 ,𝑋) Whether𝑉 has an attribute 𝑎 with value 𝑋

𝑓 (𝑋,𝑋 ′) Whether values 𝑋 and 𝑋 ′ satisfy numerical relation 𝑓

• We propose Number Reasoning Network (NRN) for CQA.

It iteratively encodes a numerical complex query into two

different structures for entities and values respectively and

achieves state-of-the-art Numerical CQA.

2 DEFINITION OF NUMERICAL CQA
To precisely describe the problem, we mathematically define nu-

merical complex query answering in this section. A multi-relational

knowledge graph with numerical attributes is defined as G =

(V,R,A,N). V is the set of the nodes or vertices, R is the set

of relation types,A is the set of numerical attribute types, andN is

the set of numerical attribute values. Each vertex 𝑣 ∈ V represents

an entity. Each of the relations 𝑟 ∈ R is a binary function defined as

𝑟 : V×V → {0, 1}. For any 𝑟 ∈ R, and𝑢, 𝑣 ∈ V , there is a relation 𝑟

between𝑢 and 𝑣 if and only if 𝑟 (𝑢, 𝑣) = 1. Meanwhile, each attribute

𝑎 ∈ A is also a binary function describing numerical attribute val-

ues, and it is defined on V × N → {0, 1}. The entity 𝑣 ∈ V has

an attribute 𝑎 ∈ A of value 𝑥 ∈ N , if and only if 𝑎(𝑣, 𝑥) = 1. In

some queries, we also need to express the numerical relations, like

comparison and computation between two numerical values, so we

use another set of binary functions 𝑓 (𝑥1, 𝑥2) : N ×N → {0, 1} to
describe whether two numerical values satisfy certain constraints,

such as 𝑥1 < 𝑥2, 𝑥1 > 𝑥2 + 20, or 𝑥1 = 2𝑥2 + 3. The relations are
defined as binary functions so that they can be directly used to

express boolean values in complex queries, and we will introduce

the definition of the complex queries in the following paragraph.

A complex numerical query is defined in existential positive

first-order logic form, which is a type of logic expression including

existential quantifiers ∃, logic conjunctions ∧, and disjunctions ∨.
In the logic query, there is a set of anchor entities 𝑉𝑎 and values

𝑋𝑎 . These anchor entities and values are the given entities and

values in a query, like 𝐵𝑒𝑖 𝑗𝑖𝑛𝑔 in 𝑞3 and 𝐶𝑎𝑙𝑖 𝑓 𝑜𝑟𝑛𝑖𝑎 in 𝑞4 in Figure

1. Meanwhile, there are existential quantified entity variables𝑉1, ...,

𝑉𝑘 , and numerical variables 𝑋1, ..., 𝑋𝑙 in a complex query. There is a

unique target variable,𝑉? in each logic query. The query intends to

find the values of𝑉?, such that there simultaneously exist𝑉1, ...,𝑉𝑘 ∈
V and 𝑋1, ..., 𝑋𝑙 ∈ N satisfying the logic expression. As every logic

query can be converted into a disjunctive normal form, the complex

numerical queries can be expressed in the following formula:

𝑞 [𝑉?] = 𝑉? .𝑉1, ...,𝑉𝑘 , 𝑋1, ..., 𝑋𝑙 : 𝑐1 ∨ 𝑐2 ∨ ... ∨ 𝑐𝑛
𝑐𝑖 = 𝑒𝑖,1 ∧ 𝑒𝑖,2 ∧ ... ∧ 𝑒𝑖,𝑚 .

(1)

Here, 𝑐𝑖 are conjunctive expressions of several atomic logic ex-

pressions 𝑒𝑖, 𝑗 , where each 𝑒𝑖, 𝑗 is any of the following expressions:

Knowledge Graph Reasoning over Entities and Numerical Values KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Query Category Complex Queries Interpretations

CQA 𝑞ଵ = 𝑉? . ∃𝑉: 𝑊𝑖𝑛 𝑉, 𝑇𝑢𝑟𝑖𝑛𝑔𝐴𝑤𝑎𝑟𝑑
∧ 𝐼𝑠𝐶𝑖𝑡𝑖𝑧𝑒𝑛𝑂𝑓 𝑉, 𝐶𝑎𝑛𝑎𝑑𝑎 ∧ 𝐺𝑟𝑎𝑑𝑢𝑎𝑡𝑒𝑑𝐹𝑟𝑜𝑚(𝑉, 𝑉?)

Find where the Canadian Turing award
laureates graduated from.

Numerical CQA 𝑞ଶ = 𝑉? . ∃𝑋ଵ, 𝑋ଶ: 𝑊𝑖𝑛 𝑉?, 𝑇𝑢𝑟𝑖𝑛𝑔𝐴𝑤𝑎𝑟𝑑
∧ 𝐺𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛 1927, 𝑋ଶ ∧ 𝐵𝑜𝑟𝑛𝐼𝑛 (𝑉?, 𝑋ଶ)

Find the Turing award winners that is
born before the year of 1927.

Numerical CQA 𝑞ଷ = 𝑉? . ∃𝑋ଵ, 𝑋ଶ: 𝐿𝑜𝑐𝑎𝑡𝑒𝑑𝐼𝑛 𝑉?, 𝑈𝑛𝑖𝑡𝑒𝑑𝑆𝑡𝑎𝑡𝑒𝑠 ∧ 𝐻𝑎𝑠𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒 𝑉?, 𝑋ଵ

∧ 𝐺𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛 𝑋ଵ, 𝑋ଶ ∧ 𝐻𝑎𝑠𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒 𝐵𝑒𝑖𝑗𝑖𝑛𝑔, 𝑋ଶ

Find the states in US that have a higher
latitudes than Beijing.

Numerical CQA 𝑞ସ = 𝑉? . ∃𝑋ଵ, 𝑋ଶ, 𝑋ଷ: 𝐿𝑜𝑐𝑎𝑡𝑒𝑑𝐼𝑛 𝑉?, 𝑈𝑛𝑖𝑡𝑒𝑑𝑆𝑡𝑎𝑡𝑒𝑠 ∧ 𝐻𝑎𝑠𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑉?, 𝑋ଵ

∧ 𝑆𝑚𝑎𝑙𝑙𝑒𝑟𝑇ℎ𝑎𝑛 𝑋ଵ, 𝑋ଶ ∧ 𝑇𝑖𝑚𝑒𝑠𝐵𝑦𝑇𝑤𝑜 𝑋ଶ, 𝑋ଷ ∧ 𝐻𝑎𝑠𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑎𝑙𝑖𝑓𝑜𝑟𝑛𝑖𝑎, 𝑋ଷ

Find the states in US that have a twice
smaller population than California?

Query Category Complex Queries Interpretations

CQA 𝑞ଵ = 𝑉? . ∃𝑉: 𝑊𝑖𝑛 𝑉, 𝑇𝑢𝑟𝑖𝑛𝑔𝐴𝑤𝑎𝑟𝑑
∧ 𝐼𝑠𝐶𝑖𝑡𝑖𝑧𝑒𝑛𝑂𝑓 𝑉, 𝐶𝑎𝑛𝑎𝑑𝑎 ∧ 𝐺𝑟𝑎𝑑𝑢𝑎𝑡𝑒𝑑𝐹𝑟𝑜𝑚(𝑉, 𝑉?)

Find where the Canadian Turing award
laureates graduated from.

Numerical CQA 𝑞ଶ = 𝑉? . ∃𝑋ଵ, 𝑋ଶ: 𝑊𝑖𝑛 𝑉?, 𝑃𝑢𝑙𝑖𝑡𝑧𝑒𝑟𝐴𝑤𝑎𝑟𝑑
∧ 𝐺𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛 1927, 𝑋ଶ ∧ 𝐵𝑜𝑟𝑛𝐼𝑛 (𝑉?, 𝑋ଶ)

Find the Pulitzer award winners that is
born before the year of 1927.

Numerical CQA 𝑞ଷ = 𝑉? . ∃𝑋ଵ, 𝑋ଶ: 𝑇𝑟𝑒𝑎𝑡 𝑉?, 𝑃𝑎𝑖𝑛 ∧ 𝑁𝑢𝑚𝑆𝑖𝑑𝑒𝐸𝑓𝑓𝑒𝑐𝑡 𝑉?, 𝑋ଵ

∧ 𝑆𝑚𝑎𝑙𝑙𝑒𝑟𝑇ℎ𝑎𝑛 𝑋ଵ, 𝑋ଶ ∧ 𝑁𝑢𝑚𝑆𝑖𝑑𝑒𝐸𝑓𝑓𝑒𝑐𝑡 Paracetamol, 𝑋ଶ

Find the drug that can relieve pain and
have fewer side effects than Paracetamol.

Numerical CQA 𝑞ସ = 𝑉? . ∃𝑋ଵ, 𝑋ଶ, 𝑋ଷ: 𝐿𝑜𝑐𝑎𝑡𝑒𝑑𝐼𝑛 𝑉?, 𝑈𝑛𝑖𝑡𝑒𝑑𝑆𝑡𝑎𝑡𝑒𝑠 ∧ 𝐻𝑎𝑠𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑉?, 𝑋ଵ

∧ 𝑆𝑚𝑎𝑙𝑙𝑒𝑟𝑇ℎ𝑎𝑛 𝑋ଵ, 𝑋ଶ ∧ 𝑇𝑖𝑚𝑒𝑠𝐵𝑦𝑇𝑤𝑜 𝑋ଶ, 𝑋ଷ ∧ 𝐻𝑎𝑠𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑎𝑙𝑖𝑓𝑜𝑟𝑛𝑖𝑎, 𝑋ଷ

Find the states in US that have a twice
smaller population than California?

Figure 1: Examples of entity relations and attribute complex queries. Existing complex query answering research only focuses
on entities and their relations. The queries involving numerical values are not defined and studied in the previous literature.
Here we underline the logic terms that involve at least one numerical variable in this figure.

𝐽𝑎𝑝𝑎𝑛

q = 𝑉? . ∃𝑉ଵ, 𝑋ଵ, 𝑋ଶ: HasLatitude 𝑉?, 𝑋ଶ
∧ 𝐺𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛 𝑋ଶ, 𝑋ଵ

∧ 𝐻𝑎𝑠𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒 𝑉ଵ, 𝑋ଵ

∧ 𝐿𝑜𝑐𝑎𝑡𝑒𝑑𝐼𝑛 𝑉ଵ, 𝐽𝑎𝑝𝑎𝑛

𝐻𝑎𝑠𝐶𝑖𝑡𝑦

Find the cities that
have a higher
latitudes than
Japanese cities.

𝐻𝑎𝑠𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒 𝐺𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛 𝐻𝑎𝑠𝐿𝑎𝑡𝑖𝑡𝑖𝑑𝑒-1

𝐽𝑎𝑝𝑎𝑛

𝑇𝑜𝑘𝑦𝑜

𝐾𝑦𝑜𝑡𝑜

𝑂𝑠𝑎𝑘𝑎

(A) (B)

(C)

(D)

Relational
Projection

Attribute
Projection

Numerical
Projection

Reverse
Attribute Projection

𝑇𝑎𝑟𝑔𝑒𝑡

Figure 2: An example query demonstrating the Number Rea-
soning Network (NRN) for complex query with numerical
values. (A) The query interpretation; (B) The logic knowledge
graph query involving attribute value reasoning; (C) The
computational graph parsed from the logic query; (D) The
illustrations of four types of projections. The attribute pro-
jection, the numerical projection, and the reverse attribute
projections are newly introduced for reasoning over values.

𝑒𝑖, 𝑗 = 𝑟 (𝑉 ,𝑉 ′), 𝑒𝑖, 𝑗 = 𝑎(𝑉 ,𝑋), or 𝑒𝑖, 𝑗 = 𝑓 (𝑋,𝑋 ′), where the 𝑟 , 𝑎, and
𝑓 are the binary expressing entity relation, attribute, and numerical

relation respectively. They are defined in the previous subsection.

𝑉 ,𝑉 ′, 𝑋, 𝑋 ′ are either anchor entities or values, or existentially

quantified variables in {𝑉1,𝑉2, ...,𝑉𝑘 } or {𝑋1, 𝑋2, ..., 𝑋𝑙 }.

3 NUMBER REASONING NETWORK FOR CQA
To deal with the complex queries that involve both entities and

numerical values, in this section, we propose the number reasoning

network (NRN) method. Different from the original query encoding

methods, in NRN, there are two phases in the encoding process

to encode the entities and numerical values separately. One of the

phases is the entity encoding phase, where we use the existing

query encoding structure, like Box Embedding [24], to encode inter-

mediate entity set representation. The other phase is the numerical

encoding phase, in which we use parameterized distribution to

encode the intermediate numerical representation. Here is a sample

encoding process of NRN. For example, we want to answer the logic

query in Figure 2 (B), expressing the meaning of Find cities that have
a higher latitude than Japanese cities. The query will first be parsed

into the computational graph as shown in (C). To start with, we are

given the entity embedding of the anchor entity Japan, and then a

relational projection is used to compute the representation of the

cities in Japan. In these steps, the encoding process is in the entity

phase. Then, we will compute the numerical values indicating the

latitude values of cities in Japan by using attribute projection. Then
we use another encoding structure to encode the set of numerical

values in the numerical encoding phase. Specifically, we use pa-

rameterized probabilistic distributions, to estimate the intermediate

numerical values. When we obtain the intermediate representation

of latitudes of cities in Japan, we will estimate the distribution of

the latitude values that are larger than previous results by using a

numerical projection of GreaterThan. Finally, a reverse attribute pro-
jection is computed to find the cities that have such latitude values

from the previous step, and the encoding process switches back to

the entity phase. In the following part of this section, we are going

to first give the full definition of the NRN computational graph, and

then introduce the query encoding structure for both entity and

numerical variables. Finally, we discuss how to parameterize the

operations in the computational graph of NRN.

3.1 Computational Graph for NRN
In the query encoding process for NRN, each intermediate state

in the encoding process corresponds to either a set of entities or a

set of attribute values. For the computational graph of entity-only

complex queries, only relational projections and logic operations

appear. Their definitions are as follows:

• Relational Projection: Given a set of entities 𝑆 and a relation

between entities 𝑟 ∈ R, the relational projection will produce
all the entities that hold a relation r with any of the entities in

𝑆 . Thus the relational projection can be described as 𝑃𝑟 (𝑆) =
{𝑣 ∈ V|𝑣 ′ ∈ 𝑆, 𝑟 (𝑣 ′, 𝑣) = 1};
• Intersection: Given a set of entities or values 𝑆1, 𝑆2, ..., 𝑆𝑛 , this

logic operation of intersection computes the intersection of

those sets as ∩𝑛
𝑖=1
𝑆𝑖 ;

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Jiaxin Bai, Chen Luo, Zheng Li, Qingyu Yin, Bing Yin, and Yangqiu Song

• Union: Given a set of entities or values 𝑆1, 𝑆2, ..., 𝑆𝑛 , the op-

eration computes the union of ∪𝑛
𝑖=1
𝑆𝑖 .

As shown in Figure 2 (D), to compute the computational graph

involving numerical attributes, we need to define three types of new

projections. An attribute projection is to compute a set of attribute

values of a given set of entities. A reverse attribute projection is to

find a set of entities that have the attribute values in a given set of

values. A numerical projection is used to find a set of values that

holds certain constraints with another set of values, for example,

GreatThan, EqualTo, etc. Their formal definitions are as follows:

• Attribute Projection: Given a set of entities S and a numerical

attribute type 𝑎, the attribute projection gives all the values

that can be achieved under the attribute type a by any of the

entities in 𝑆 . Then the attribute projection can be described

by 𝑃𝑎 (𝑆) = {𝑥 ∈ N |𝑣 ∈ 𝑆, 𝑎(𝑣, 𝑥) = 1};
• Reverse Attribute Projection: Given a set of values 𝑆 ⊂ N and

a numerical attribute type 𝑎, the reverse attribute projection

gives all the entities whose attribute a has a value in S. As a

result, the reverse attribute projection can be described by

the following formula 𝑃−1𝑎 (𝑆) = {𝑣 ∈ V|𝑥 ∈ 𝑆, 𝑎(𝑣, 𝑥) = 1};
• Numerical Projection: A numerical projection is used to com-

pute a set of values from a set of existing values. This com-

putation depends on the numerical relation function 𝑓 , and

it can be described by 𝑃𝑓 (𝑆) = {𝑥 ∈ N |𝑥 ′ ∈ 𝑆, 𝑓 (𝑥 ′, 𝑥) = 1};

3.2 Representations and Operations in NRN
When a complex query is iteratively encoded through the com-

putation graph, as shown in Figure 2 (C), it is either in the entity

encoding phase or in the numerical encoding phase. Correspond-

ingly, the intermediate state either represents a set of entities in

the knowledge graph or a set of attribute values.

In previous work on query encoding, various methods were

proposed to encode entity variables, but they cannot reasonably

encode numerical attributes. In this paper, we will focus on how to

compute and represent numerical values and how to use them to

answer complex queries. For simplicity, suppose in the step 𝑖 and

the encoding process is entity phase, then the query embedding is

denoted as: 𝑞𝑖 ∈ 𝑅𝑑 . Otherwise, if the encoding process is in the nu-

merical phase, queries are represented in a more sophisticated way.

Previous research shows that directly using the numerical value

itself as input to a reasoning model is not effective. As a result, we

employ static numerical encoding methods to project the numerical

values from the real space 𝑅 to the 𝑑-dimensional real space 𝑅𝑑 ,

and this numerical encoding is denoted as𝜓 (·). Meanwhile, we fur-

ther assume the intermediate numerical answers are drawn from a

multi-variant probabilistic distribution in the 𝑑-dimensional space.

If the query encoding process is in the numerical encoding phase,

the query encoding is represented by a family of probability 𝑝𝜃𝑖 (𝑥)
density functions on 𝑅𝑑 , where the parameters are denoted as 𝜃𝑖 ∈
𝑅𝑘 . Meanwhile, when we have queries like Find latitudes of the
Canadian cities, we are not only asking for some numerical quantity,

but also the types or the units of measure of the quantity, like

Degrees, Meters, Dates, or Years. Suppose the distribution of type 𝑡

in the numerical space is described by another distribution 𝜙𝑡 .

3.2.1 Relational Projection and Logic Operations on Entities. In the

number reasoning network, we adopt established query encoding

methods as the backbones to conduct relational projections and

logic operations for entities. In the implementation, we used three

different encoding structures to encode the entity phase [4, 15, 24].

Despite their differences, their query embeddings can be uniformly

flattened to vectors. Then, the query encoding in the entity phase

is expressed as a 𝑑-dimensional vector: 𝑞𝑖 ∈ 𝑅𝑑 .

3.2.2 Attribute Projection. In the attribute projection, suppose we

have query embedding of the entity variable at the 𝑖-th step of 𝑞𝑖 ,

and we want to obtain its representation on the attribute values on

the attribute type 𝑎, we can use a neural structure to parameterize

the distribution parameters for the 𝑖 + 1-th step,

𝜃𝑖+1 = 𝐹𝑝 (𝑞𝑖 , 𝑎), (2)

where the 𝐹𝑝 is a neural structure whose weights will be optimized

in the learning process. A typical parameterization of 𝐹𝑝 is gated

transition, which is originally inspired by the recurrent neural

network unit [4]. Here are the equations for our parameterization:

𝑝𝑖 =𝑊
𝑝
𝑝 𝑞𝑖 + 𝑏

𝑝
𝑝

𝑧𝑖 = 𝜎 (𝑊 𝑝
𝑧 𝑒𝑎 +𝑈

𝑝
𝑧 𝑝𝑖 + 𝑏

𝑝
𝑧),

𝑟𝑖 = 𝜎 (𝑊 𝑝
𝑟 𝑒𝑎 +𝑈

𝑝
𝑟 𝑝𝑖 + 𝑏

𝑝
𝑟),

𝑡𝑖 = 𝜙 (𝑊 𝑝

ℎ
𝑒𝑎 +𝑈ℎ (𝑟𝑖 ⊙ 𝑝𝑖) + 𝑏

𝑝

ℎ
),

𝜃𝑖+1 = (1 − 𝑧𝑖) ⊙ 𝑝𝑖 + 𝑧𝑖 ⊙ 𝑡𝑖 .

(3)

Here, 𝑒𝑎 ∈ 𝑅𝑘 is the embedding used to encode the attribute type

𝑎. Meanwhile, 𝜎 and 𝜙 are the sigmoid and hyperbolic tangent

functions, and ⊙ is the Hadamard product. Also,𝑊
𝑝
𝑝 ∈ 𝑅𝑑 ·𝑘 and

𝑊
𝑝
𝑧 ,𝑊

𝑝
𝑟 ,𝑊

𝑝

ℎ
,𝑈

𝑝
𝑧 ,𝑈

𝑝
𝑟 ,𝑈

𝑝

ℎ
∈ 𝑅𝑘 ·𝑘 are parameter matrices.

3.2.3 Reverse Attribute Projection. Suppose wewant to find entities
that have a numerical attribute value from a given set of values.

Then we compute the query embedding for the resulting entity set

by using the reverse attribute projection operation:

𝑞𝑖+1 = 𝐹𝑟 (𝜃𝑖 , 𝑎), (4)

where the 𝐹𝑟 is a neural structure whose weights will also be opti-

mized in the learning process. Equation (3)’s gated transition func-

tion can serve for reverse attribute projection. While the weights

are substituted with a different set of parameters 𝑊 𝑟
𝑝 , 𝑊

𝑟
𝑧 , 𝑊

𝑟
𝑟 ,

𝑊 𝑟
ℎ
∈ 𝑅𝑘 ·𝑑 and𝑈 𝑟

𝑧 ,𝑈
𝑟
𝑟 ,𝑈

𝑟
ℎ
∈ 𝑅𝑑 ·𝑑 .

3.2.4 Numerical Projection. The numerical projections are directly

applied to the parameters of distributions. As the numerical con-

straint of 𝑓 could be an arbitrary binary function from 𝑅2 to {0, 1},
for now, we use the function 𝐹𝑓 to express the projection operation:

𝜃𝑖+1 = 𝐹𝑓 (𝜃𝑖) . (5)

In a typical parameterization, we can use an embedding 𝑒𝑓 to encode

the characteristics of the numerical function 𝑓 . The transition of

distribution caused the function 𝑓 to be learned in the training

process. For simplicity, we can still use gated transition in Equation

(3) while replacing the embedding 𝑒𝑟 with 𝑒𝑓 , and replacing their

weights with𝑊
𝑓

𝑗
,𝑈

𝑓

𝑗
∈ 𝑅𝑘 ·𝑘 , where 𝑗 ∈ {𝑧, 𝑟, ℎ} respectively.

Knowledge Graph Reasoning over Entities and Numerical Values KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 2: The statistics of the three knowledge graphs used to construct the benchmark.

Graphs Data Split #Nodes #Rel. # Attr. #Rel. Edges #Attr. Edges #Num. Edges #Edges

FB15k

Training 25,106 1,345 15 947,540 20,248 27,020 1,015,056

Validation 26,108 1,345 15 1,065,982 22,779 27,376 1,138,916

Testing 27,144 1,345 15 1,184,426 25,311 27,389 1,262,437

DB15k

Training 31,980 279 30 145,262 33,131 25,495 237,019

Validation 34,191 279 30 161,978 37,269 25,596 262,112

Testing 36,358 279 30 178,394 41,411 25,680 286,896

YAGO15k

Training 32,112 32 7 196,616 21,732 26,616 266,696

Validation 33,078 32 7 221,194 22,748 26,627 293,317

Testing 33,610 32 7 245,772 23,520 26,631 319,443

3.2.5 Intersection and Union on Attribute Values. Suppose we have
n attribute variables 𝜃1

𝑖
, 𝜃2

𝑖
, ..., 𝜃𝑛

𝑖
as inputs for intersection opera-

tions. Their intersection and union are expressed as:

𝜃𝑖+1 = 𝐹𝑖 (𝜃1𝑖 , 𝜃
2

𝑖 , ..., 𝜃
𝑛
𝑖),

𝜃𝑖+1 = 𝐹𝑢 (𝜃1𝑖 , 𝜃
2

𝑖 , ..., 𝜃
𝑛
𝑖) .

(6)

For functions 𝐹𝑖 and 𝐹𝑢 , we use DeepSet [38] functions to parame-

terize them respectively.

𝜃𝑖+1 = DeepSet([𝜃1𝑖 , 𝜃
2

𝑖 , ..., 𝜃
𝑛
𝑖]) . (7)

The intersection and union operations are thus invariant to in-

put variable permutations. In our implementation, we use a self-

attention network followed by a feed-forward network to imple-

ment such permutation invariant DeepSet function. Suppose 𝜃𝑖 =
[𝜃1
𝑖
, 𝜃2

𝑖
, ..., 𝜃𝑛

𝑖
], then their formulas are as follows:

𝑎𝑖+1 =Attn(𝑊𝑞𝜃
𝑇
𝑖 ,𝑊𝑘𝜃

𝑇
𝑖 ,𝑊𝑣𝜃

𝑇
𝑖)

𝑇
(8)

𝜃𝑖+1 =MLP(𝑎𝑖) . (9)

The𝑊𝑞,𝑊𝑘 ,𝑊𝑣 ∈ 𝑅𝑘×𝑘 are parameters used for modeling the input

Query, Key, and Value for the attention module Attn. The Attn
represents the scaled dot-product attention,

Attn(𝑄,𝐾,𝑉) = Softmax(𝑄𝐾
𝑇

√
𝑑
)𝑉 . (10)

Here, the𝑄 , 𝐾 , and𝑉 represent the input Query, Key, and Value for

this attention layer. The MLP here denotes a multi-layer perceptron

layer with ReLU activation.

3.2.6 Learning Attribute Reasoning. As there are two types of

queries with different types of target variables, we define two loss

functions respectively. Suppose there are total 𝐼 steps in the com-

putational graphs, the target variable is an entity variable, and its

query embedding is 𝑞𝐼 , then we compute the normalized probability

of the entity 𝑣 being the correct answer to the query 𝑞 by using the

softmax function on all similarity scores,

𝑝 (𝑞, 𝑣) = 𝑒<𝑞𝐼 ,𝑒𝑣>∑
𝑣′∈𝑁 𝑒<𝑞𝐼 ,𝑒𝑣′>

. (11)

Then the objective function of entities is expressed as

𝐿𝐸 = − 1

𝑁

𝑁∑︁
𝑗=1

log𝑝 (𝑞 (𝑗) , 𝑣 (𝑗)) . (12)

Here, each (𝑞 (𝑖) , 𝑣 (𝑖)) is one of the positive query-answer parties,
and there are 𝑁 such pairs.

Meanwhile, for the numerical variables, we are going to use the

maximize a posteriori probability (MAP) estimation to derive an

objective function for type-aware attribute reasoning. Suppose the

parameters of the attribute distribution of the final step are 𝜃𝐼 , the

positive answer is 𝑣 , and the answer has a value type 𝑡 . The 𝜃𝐼 is

computed from 𝜃𝑖 and 𝑞𝑖 where 𝑖 ∈ {1, 2, 3, ..., 𝐼 − 1} by using a

series of projections like 𝐹𝑝 ,𝐹𝑟 , 𝐹𝑓 , and logic operations 𝐹𝑖 and 𝐹𝑢 .

Then our goal is to optimize 𝜃𝐼 given 𝑣 and 𝑡 . Then suppose 𝑓 and

𝑔 are the conditional distribution of 𝑣 given 𝜃𝐼 and 𝑡 , and 𝜃𝐼 given

𝑡 , and meanwhile 𝑣 is conditional independent of 𝑡 given 𝜃𝐼 . Then

according to MAP estimation,

ˆ𝜃𝐼 (𝑣, 𝑡) = argmax

𝜃𝐼

𝑓 (𝜃𝐼 |𝑣, 𝑡)

= argmax

𝜃𝐼

𝑓 (𝑣 |𝜃𝐼 , 𝑡)𝑔(𝜃𝐼 |𝑡)∫
𝜃𝐼
𝑓 (𝑥 |𝜃, 𝑡)𝑔(𝜃 |𝑡)𝑑𝜃

= argmax

𝜃𝐼

𝑓 (𝑣 |𝜃𝐼 , 𝑡)𝑔(𝜃𝐼 |𝑡)

= argmin

𝜃𝐼

(− log 𝑓 (𝑣 |𝜃𝐼) − log𝑔(𝜃𝐼 |𝑡)) .

(13)

Suppose (𝑞 (𝑗) , 𝑣 (𝑗)) is a pair of positive query-answer pairs, and
we have totally M such pairs. Suppose the value type of 𝑣 (𝑖) is
𝑡 (𝑖) . Using the previous defined notions, then 𝑓 (𝑣 (𝑗) |𝜃 (𝑗)

𝐼
) can be

written as 𝑝
𝜃
(𝑗)
𝐼

(𝑣 (𝑗)), and 𝑔(𝜃𝐼 |𝑡)) can be written as 𝜙𝑡 (𝑗) (𝜃
(𝑗)
𝐼
).

Then, the loss of explicit queries can be described by

𝐿𝐴 =
1

𝑀

𝑀∑︁
𝑗=1

(− log 𝑝
𝜃
(𝑗)
𝐼

(𝜓 (𝑣 (𝑗))) − log𝜙𝑡 (𝑗) (𝜃
(𝑗)
𝐼
)), (14)

where the 𝜓 (·) is numerical encoding defined on the domain of

𝑅 with the range of 𝑅𝑑 . In the training process, we alternatively

optimize these two loss functions to train all parameters in different

neural structures together.

4 BENCHMARK CONSTRUCTION
In this section, we construct three benchmark datasets for evaluat-

ing the performance of numerical complex query answering.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Jiaxin Bai, Chen Luo, Zheng Li, Qingyu Yin, Bing Yin, and Yangqiu Song

Table 3: The statistics of the queries sampled from the FB15k, DB15k, and YAGO15k knowledge graphs.

Graphs Data Split 1p 2p 2i 3i pi ip 2u up All

FB15k

Training 304,633 138,192 226,729 288,874 260,057 233,834 284,301 284,931 2,021,551

Validation 8,271 15,860 23,359 28,836 25,081 22,930 29,187 29,210 182,734

Testing 7,969 15,431 23,346 28,865 24,810 22,232 29,212 29,274 181,139

DB15k

Training 124,851 99,698 140,427 190,413 171,353 163,687 190,364 194,244 1,275,037

Validation 3,529 10,388 9,792 13,817 14,594 16,651 19,512 19,792 108,075

Testing 3,387 10,047 9,914 14,603 14,642 15,897 19,504 19,773 107,767

YAGO15k

Training 84,014 76,238 136,282 183,850 162,712 145,994 183,963 183,459 1,156,512

Validation 2,833 7,986 10,757 16,884 13,485 13,899 18,444 19,105 103,393

Testing 2,713 7,949 10,935 17,171 13,481 13,526 18,433 18,997 103,205

2p

2i 3iip pi

2u up

u

rap rp

rp

ap rap

rp

e

e

nv

e

e

nv
e

e

np rap

rp

nv

e

nv
e

ap np

ap

e

e

nv
nv

…

rap

rpe

nv
e

rap

rpe

nv
e

np

ape

nv
nv

rp

rp

e

e

e

…

1p

Figure 3: Eight general query types. Each general query type
corresponds to multiple specific query types.

4.1 Knowledge Graphs
We use FB15k, DB15k, and YAGO15k [17] as the knowledge graphs

to create our benchmarks. These KGs are publicly available, and

they include both triples describing entity relations and numerical

values. For each knowledge graph, we first randomly divide the

edges into training, validation, and testing edges with a ratio of

8:1:1 respectively. Then, the training graph G𝑡𝑟𝑎𝑖𝑛 , validation graph

G𝑣𝑎𝑙 , and testing graph G𝑡𝑒𝑠𝑡 are aggregated from the training

edges, training+validation edges, and training+validation+testing

edges respectively. The detailed statistics of the knowledge graphs

are shown in Table 2. The columns #Rel. and #Attr. denote the

number of entity relation types and the number of attribute types

respectively. #Rel. Edges, #Attr. Edges, and #Num. Edges represent

the total number of edges describing entity relations, attribute

values, and numerical relations between values.

4.2 Query Types
Following previous work [15], we used the following eight types

of query as general query types. For each general query type, each

edge represents a projection, and each node either represents either

a set of entities or numerical values. Based on these query types

and knowledge graph structures, we further derive various spe-

cific sub-types. For example, the query type pi can be instantiated

0

1000

2000

3000

4000

5000
FB15k

Degrees Integer

0

2000

4000

6000

8000
DB15k

Double Integer Float
Year Date

0

2000

4000

6000

8000

10000

12000
YAGO15k

Degrees Date

Figure 4: The distribution of the types of numerical values
on three different knowledge graphs.

into various types of specific types of queries. As shown in Figure

3, e stands for an entity, nv stands for numerical values, and ap,
rap, rp, and np are the abbreviations of attribute projection, reverse
attribute projection, relational projection, and numerical projections
respectively. The general query types are shown in Table 4.

4.3 Sampling of Complex Attribute Queries
In this section, we show how to sample numerical complex queries.

Before sampling, we added dummy numerical edges to the graphs to

evaluate the performance on numerical relations. For simplicity, we

consider seven types of numerical relations: EqualTo, SmallerThan,
GreaterThan, TwiceEqualTo, ThreeTimesEqualTo, TwiceGreaterThan,
and ThreeTimesGreaterThan. These numerical relations are ran-

domly added to the attribute value pairs with the same value type

and satisfy the corresponding constraints. For each type of nu-

merical relation, we set an upper limit of four thousand edges on

each graph. The total number of numerical edges added is shown

in Table 2. There are two general steps in sampling the complex

attribute queries. In the first step, we are given eight types of gen-

eral queries with abbreviations of 1p,2p,2i,3i,ip,ip,2u, and up. Their
definitions are given in Table 3. Given the general query type and

a knowledge graph 𝐺 , a sampling algorithm is used to generate a

complex attribute query that has at least one answer. The details of

the algorithm are given in the Appendix. In the second step, given

a complex attribute query from the first step, we conduct a graph

search and find its corresponding answers on the KG.

For each knowledge graph, we have constructed their corre-

sponding Training, Validation, and Testing graphs. Then, the first

Knowledge Graph Reasoning over Entities and Numerical Values KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 4: The abbreviations of the query types and structures.

Abbr. General Query Type Specific Query Type Example

1p (p,(e)) (rap,(nv))

2p (p,(p,(e))) (rap, (np,(nv)))

2i (i,(p,(e)),(p,(e))) (i, (np,(nv)), (ap, (e)))

3i (i,(p,(e)),(p,(e)),(p,(e))) (i, (np,(nv)), (ap, (e)), (ap, (e)))

ip (p,(i,(p,(e)),(p,(e)))) (rp, (i, (np,(nv)), (ap, (e))))

pi (i,(p,(e)),(p,(p,(e)))) (i, (np,(nv)), (ap, (rp, (e))))

2u (u,(p,(e)),(p,(e))) (u, (np,(nv)), (ap, (e)))

up (p,(u,(p,(e)),(p,(e)))) (rp, (u, (np,(nv)), (ap, (e))))

step of the previously described query sampling process is con-

ducted on these three data splits independently. After this, we

obtained the training queries, validation queries, and test queries

respectively. Then, For the training queries, we conduct a graph

search on the training graph to find corresponding training answers.

For the validation queries, we search their answers on both the

training graph and the validation graph, and we only use the queries

that have a different number of training and validation answers.

Finally, for the testing queries, the graph searches are conducted

on training, validation, and testing respectively. Similarly, we only

use the testing queries that have a different number of answers

on validation and test graphs. After these two steps are done, the

statistics of the resulting training, validation, and testing queries of

three knowledge graphs are shown in Table 3.

5 EXPERIMENT
In this section, we implement the proposed number reasoning net-

work (NRN) and compare it to existing query encoding models.

5.1 Baseline Methods
NRN uses previous query encoding methods to encode entities

during the entity encoding phase. It can be combined with a wide

range of entity encoding structures that can be transformed into a

fixed length of real-valued vectors. We use the following methods:

• GQE [15]: The graph query encoding model encodes a com-

plex logic query into a single vector;

• Q2B [24]: The Query2Box model encodes a complex query

into hyper-rectangles in the embedding space;

• Q2P [4]: The Query2Particles model encodes a complex logic

query into multiple vectors.

5.2 Numerical Encoding
As explained in §3.2, we use numerical encoding methods to project

the attribute values from 𝑅 to 𝑅𝐷 to obtain number embedding for

NRN. We use the following two deterministic numerical encodings.

• DICE [28]: DICE is a deterministic independent-of-corpus

word embedding of numbers. DICE managed to use a linear

mapping from the numerical values 𝑣 to an angle 𝛼 ∈ [0, 𝜋],
and then conduct a polar-to-Cartesian transformation in the

𝐷-dimensional space according to the following formula:

𝜓 (𝑣)𝑑 =

{
sin

𝑑−1 (𝛼) cos(𝛼), 1 ≤ 𝑑 < 𝐷

sin
𝐷 (𝛼), 𝑑 = 𝐷

(15)

Table 5: The main experiment results of numerical complex
query answering. NRN constantly outperforms the baseline
methods on Hit@1, Hit@3, Hit@10, and MRR.

Dataset Entity Value H@1 H@3 H@10 MRR

FB15k

GQE

Baseline 13.56 23.47 34.80 20.80

NRN + DICE 14.16 24.69 36.18 21.72

NRN + Sinusoidal 14.33 24.81 36.25 21.86

Q2B

Baseline 14.49 25.96 38.20 22.56

NRN + DICE 15.55 27.31 39.24 23.72

NRN + Sinusoidal 15.78 27.65 39.54 23.96

Q2P

Baseline 15.54 25.50 36.88 22.84

NRN + DICE 16.98 27.02 38.36 24.27

NRN + Sinusoidal 17.72 27.96 39.23 25.09

DB15k

GQE

Baseline 6.86 12.98 21.28 11.73

NRN + DICE 7.26 13.36 21.81 12.15

NRN + Sinusoidal 7.30 13.63 22.32 12.34

Q2B

Baseline 7.47 14.17 22.81 12.66

NRN + DICE 8.07 15.21 24.22 13.53
NRN + Sinusoidal 8.05 15.04 24.05 13.45

Q2P

Baseline 8.41 14.57 22.84 13.31

NRN + DICE 8.81 15.10 23.27 13.73

NRN + Sinusoidal 9.13 15.69 24.22 14.25

YAGO15k

GQE

Baseline 10.56 18.12 27.65 16.35

NRN + DICE 11.68 19.49 29.05 17.59

NRN + Sinusoidal 11.78 19.74 29.12 17.73

Q2B

Baseline 13.47 22.67 32.56 20.02

NRN + DICE 13.94 23.74 33.56 20.77

NRN + Sinusoidal 14.41 23.96 33.78 21.13

Q2P

Baseline 6.70 11.98 20.11 11.29

NRN + DICE 9.80 16.98 26.74 15.53
NRN + Sinusoidal 9.90 16.83 26.43 15.49

• Sinusoidal [30]: The Sinusoidal encoding of value is first pro-

posed in encoding token position in the transformer model.

In this paper, we found that this function is also effective in

encoding numerical values. Its formula is expressed by:

𝜓 (𝑣)𝑑 =

{
sin(𝑣

𝑛𝑑/𝐷
), 𝑑 ≡ 0 mod 2

cos(𝑣

𝑛 (𝑑−1)/𝐷
), 𝑑 ≡ 1 mod 2

(16)

These two functions are both deterministic and preserve geometric

properties from the original value space to the embedding space.

5.3 Evaluation Metrics
For a testing query 𝑞, the training, validation, and testing answers

are denoted as [𝑞]𝑡𝑟𝑎𝑖𝑛 , [𝑞]𝑣𝑎𝑙 , and [𝑞]𝑡𝑒𝑠𝑡 respectively. In the ex-

periment, we evaluate the generalization capability of the attribute

reasoning models by computing the rankings of the answers that

cannot be directly searched from an observed knowledge graph.

Suppose [𝑞]𝑣𝑎𝑙/[𝑞]𝑡𝑟𝑎𝑖𝑛 represents the answer set of the query

𝑞 that can be searched from the validation graph but cannot be

searched from the training graph. Similarly, [𝑞]𝑡𝑒𝑠𝑡 /[𝑞]𝑣𝑎𝑙 is the
set of answers that can be found on the test graph but cannot be

found in the validation graph. Then, the evaluation metrics of the

test query 𝑞 can be expressed in the following equation:

Metric(𝑞) = 1

| [𝑞]𝑡𝑒𝑠𝑡 /[𝑞]𝑣𝑎𝑙 |
∑︁

𝑣∈[𝑞]𝑡𝑒𝑠𝑡 /[𝑞]𝑣𝑎𝑙
𝑚(𝑟𝑎𝑛𝑘 (𝑣)) . (17)

When the evaluation metric is Hit@K, the𝑚(𝑟) in Equation (17)

is defined as𝑚(𝑟) = 1[𝑟 ≤ 𝐾]. In other words,𝑚(𝑟) = 1 if 𝑟 ≤ 𝐾 ,

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Jiaxin Bai, Chen Luo, Zheng Li, Qingyu Yin, Bing Yin, and Yangqiu Song

Table 6: The mean reciprocal ranking (MRR) results for different types of numerical complex queries.

Dataset Entity Encoding Values Encoding 1p 2p 2i 3i pi ip 2u up

FB15k

GQE

Baseline 30.63 7.54 32.70 39.61 21.57 8.87 7.18 4.17

NRN + DICE 31.75 8.16 33.96 40.32 22.70 9.80 8.45 4.66
NRN + Sinusoidal 31.69 8.15 33.99 41.19 23.10 10.10 7.57 4.51

Q2B

Baseline 35.16 7.12 35.39 41.31 22.99 9.17 12.76 4.02

NRN + DICE 36.96 7.66 36.50 42.30 24.17 10.41 14.53 4.79
NRN + Sinusoidal 37.01 7.74 36.88 42.72 24.25 10.09 15.61 4.54

Q2P

Baseline 39.29 12.45 30.40 35.29 20.09 11.05 21.25 7.80

NRN + DICE 41.45 12.65 32.91 37.61 22.02 12.85 21.74 8.03
+ Sinusoidal 42.75 12.87 33.71 38.75 23.14 13.23 23.16 7.89

DB15k

GQE

Baseline 9.83 2.41 18.83 34.48 11.21 2.11 1.86 1.94

NRN + DICE 10.46 2.58 20.17 34.80 11.88 2.48 1.94 2.03

NRN + Sinusoidal 10.29 2.53 20.14 35.46 12.50 2.52 2.08 2.14

Q2B

Baseline 10.18 2.53 20.81 36.29 12.57 2.72 2.06 1.67

NRN + DICE 11.01 2.66 22.38 37.47 14.17 3.09 2.62 2.20
NRN + Sinusoidal 10.96 2.71 22.60 37.44 13.81 3.05 2.41 2.13

Q2P

Baseline 14.44 3.96 20.67 33.85 13.64 3.48 4.66 2.96
NRN + DICE 14.58 3.81 22.15 35.36 13.90 2.83 4.94 2.67

NRN + Sinusoidal 14.71 3.81 23.75 36.66 14.47 2.96 4.63 2.81

YAGO15k

GQE

Baseline 14.28 3.18 32.83 37.83 15.91 4.89 3.62 1.82

NRN + DICE 15.21 4.20 35.08 40.32 17.01 5.71 3.95 1.95

NRN + Sinusoidal 14.79 4.23 35.68 39.64 18.29 5.65 4.23 1.96

Q2B

Baseline 18.84 3.91 38.62 44.67 18.72 7.31 6.90 2.47

NRN + DICE 20.83 4.53 38.87 45.19 20.61 7.69 8.72 2.73

NRN + Sinusoidal 21.40 4.59 39.72 45.16 19.62 7.90 9.05 2.82

Q2P

Baseline 19.84 4.64 17.42 19.34 11.14 4.33 9.92 3.07

NRN + DICE 22.68 5.36 25.45 29.70 14.07 5.67 11.73 3.47

NRN + Sinusoidal 22.97 5.70 25.70 29.04 14.38 5.40 11.87 3.51

otherwise𝑚(𝑟) = 0. Meanwhile, if the evaluation metric is mean

reciprocal ranking (MRR), then the𝑚(𝑟) is defined as𝑚(𝑟) = 1

𝑟 .

Similarly, if 𝑞 is a validation query, its generalization capability

is evaluated on [𝑞]𝑣𝑎𝑙/[𝑞]𝑡𝑟𝑎𝑖𝑛 instead of [𝑞]𝑡𝑒𝑠𝑡/[𝑞]𝑣𝑎𝑙 . In our

experiment, we train all the models by using the training queries,

and we select the hyper-parameters by using the validation queries.

The evaluation is then finally conducted on the testing queries.

5.4 Experiment Results
As discussed in §5.1, we use three different query encoding methods

GQE [15], Q2B [24], and Q2P [4] as the backbone for entities in our

framework. Meanwhile, to evaluate the performance of NRN, we

also use the original version of the GQE, Q2B, and Q2P methods

as baselines. In these baselines, all attribute values in the knowl-

edge graphs are treated in the same way as other entities in the

knowledge graph. In our proposed NRN framework, we use two

ways of incorporating attribute value information in the reasoning

model. First, we use the DICE [28] and Sinusoidal [30] function to

encode attribute values as the numerical encoding function 𝜓 (𝑣)
in Equation (14). Meanwhile, for simplicity, we choose to use the

multi-variant Gaussian distributions as the distribution family used

for the distribution of numerical queries 𝑝𝜃 (𝑥) and the distribu-

tion of the parameters given the value type 𝜙𝑡 (𝜃) in Equation (14).

Experiment results are reported in Table 5 and Table 6.

Table 5 reports the averaged results in Hit@1, Hit@3, Hit@10,

and MRR. The experiment results show that the number reasoning

networks constantly outperform their baseline reasoning methods

on three different knowledge graphs under four different evalua-

tion metrics. The difference between the baseline query encoding

method and our number reasoning network is that we use pa-

rameterized distributions to encode the numerical attribute values

instead of using a unified query encoding structure. As a result,

from the empirical results, we can conclude that parameterized dis-

tributions are effective encoding structures for numerical attributes.

On the other hand, the Sinusoidal function performs on par or even

better than DICE on different KGs under various metrics. Thus

Sinusoidal is a simple yet effective method to encode the magnitude

of knowledge graph attribute values. Moreover, the mean recipro-

cal rank (MRR) scores for different types of queries are shown in

Table 6. Empirical results show that NRN performs better than the

baselines on almost every type of query on the three datasets.

5.5 Computing Time Analysis
Further analysis on computing time is also conducted. In this experi-

ment, wemeasure the average training and inference time on FB15k,

DB15k, and YAGO15K with the Q2P. The experiment results are

shown in Table 7. We run our experiments on the RTX2080ti graph-

ics card with a batch size of 1024. Then we compute the average

training and inference time per query using the batch processing

time divided by the batch size. The empirical results show that the

average inference time of NRN is 0.11 milliseconds longer than the

baseline, and the training time is 0.16 milliseconds longer. Although

Knowledge Graph Reasoning over Entities and Numerical Values KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 7: The average training time and inference time per query in milliseconds (ms) of complex numerical queries. Although
the training and inference are slower than the baseline, NRN still achieves high training and inference speed.

Time (ms)

FB15k DB15k YAGO15k Average

Training Inference Training Inference Training Inference Training Inference

Baseline 0.090 0.042 0.078 0.031 0.088 0.040 0.085 0.037

NRN 0.253 0.149 0.229 0.134 0.255 0.152 0.245 0.145

the computing time is longer than the baseline model, the NRN is

still fast and effective.

6 RELATEDWORK
The query encoding methods are closely related to this work. Some

methods use different geometric to encode queries. The GQE [15]

model encodes a KG query as a vector in embedding space. Query2Box

[24] encodes a KG query as a hyper-rectangle in an embedding

space. It can be used for answering existential positive first-order

(EPFO) complex queries. EmQL [27] proposes to use count sketches

to improve the faithfulness of the query embeddings by using count-

min sketches. ConE [39] improves the Q2B by using cone embed-

dings. The cone embeddings are able to express negation and en-

code arbitrary first-order logic queries. CylE [22] proposes to use

cylinders to encode complex queries. Q2P [4] encodes a logic query

into multiple vectors in the embeddings space. Meanwhile, HypE

[11] encodes the complex queries as hyperbolic query embedding.

Wang et al. [32] propose Wasserstein-Fisher-Rao Embedding for

CQA. Meanwhile, some methods try to encode logic queries into

specific probabilistic structures. Beta Embedding [25] proposes to

use multiple Beta distributions to encode logic knowledge graph

queries expressed in First-order logic queries. Yang et al. [37] pro-

pose to use Gamma distributions to encode complex queries. Then,

PERM [10] embeddings encode the complex queries by using a

mixture of Gaussians. Recently, Line Embedding [16] is proposed

to relax the distributional assumptions by using a logic space trans-

formation layer to convert probabilistic embeddings to LinE space

embedding. Meanwhile, there is some work attempting to use neu-

ral structures to encode complex queries. The transformer structure

with specially designed graph hierarchy encoding is proposed by

BiQE [18] for complex queries. Meanwhile, Bai et al. [5] propose to

linearize the computational graph and then use sequence encoders

to encode queries. Newlook [20] proposes to use different types of

neural networks to iteratively encode complex queries. Simultane-

ously, [1] managed to use MLP and MLP-Mixers [29] to achieve

improved performance. ENeSy [36] uses an entangledmethod of the

neural and symbolic method to conduct query encoding. QE-GNN

[40] uses the message passing over KG to conduct query encod-

ing. The Mask-and-Reasoning [21] proposes to use a knowledge

graph transformer, which is a type of graph neural network, to

conduct pre-training on the knowledge graph. The pre-trained KG

transformer is then fine-tuned to answer complex queries.

Meanwhile, query decomposition [2] is another line of research

for answering complex KG queries. In the query decomposition

method, a complex query is first decomposed into atomic queries.

Then the probabilities of atomic queries are computed by a neural

link predictor. Recently, Wang et al. [33] propose to use one-hop

message passing on query graphs to conduct complex query an-

swering. In the inference process, either continuous optimization

or beam search is used for finding the answers. More recently,

SMORE [23] is proposed as a framework to train and evaluate large

scaled knowledge graph completion and complex query answering

models. The compositional generalization capability of complex

query answering is bench-evaluated by the EFO-1 dataset [34].

On the other hand, ROMA [35] is proposed to answer complex

logic queries on multi-view knowledge graphs. Though existing

methods can effectively conduct reasoning on entities and their

relations on a knowledge graph, they cannot be directly used to

reasonably answer numerical complex queries. Recently, Bai et al.

[3] propose to use memory-enhanced query encoding for complex

query answering on eventuality knowledge graphs.

Prior research has explored the treatment of numerical attributes

in knowledge graphs. KBLRN [13] proposes to learn the represen-

tation of knowledge bases by jointly using latent, relational, and

numerical features. KR-EAR [19] proposes a knowledge represen-

tation model to jointly learn the entity, relations, and attributes in

knowledge graphs. Numerical value propagation [17] is proposed to

predict the value of entities’ numerical attributes. Multi-relational

attribute propagation [6] is then proposed to improve attribute

completion by using message passing on a knowledge graph. How-

ever, these methods are not able to answer complex logic queries.

Duan et al. [12] propose to use the KG embedding methods to train

the representations of numerical values over synthetic numerical

relations, and this method can is an alternative to the DICE and

Sinusoidal for encoding real numbers for NRN. Meanwhile, Neural-

Num-LP [31] proposes to learn multi-hop rules involving numerical

attributes from a knowledge graph. However, it still cannot deal

with complex logic queries.

7 CONCLUSION
In this work, we proposed the new task of numerical complex

attribute query answering (Numerical CQA). Meanwhile, we con-

structed a benchmark dataset based on three public KGs: FB15k,

YAGO15k, and DBpedia15k. Finally, we proposed a new framework

that can conduct numerical attribute value answering. Experiments

show that our number encoding network (NRN) with two-phase

query encoding can significantly outperform the previous query

encoding methods and achieve state-of-the-art Numerical CQA.

ACKNOWLEDGMENTS
The authors of this paper are supported by theNSFC Fund (U20B2053)

from the NSFC of China, the RIF (R6020-19 and R6021-20), and the

GRF (16211520 and 16205322) from RGC of Hong Kong, theMHKJFS

(MHP/001/19) from ITC of Hong Kong and the National Key R&D

Program of China (2019YFE0198200) with special thanks to HK-

MAAC and CUSBLT. We also thank the UGC Research Matching

Grants (RMGS20EG01-D, RMGS20CR11, RMGS20CR12, RMGS20EG19,

RMGS20EG21, RMGS23CR05, RMGS23EG08).

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Jiaxin Bai, Chen Luo, Zheng Li, Qingyu Yin, Bing Yin, and Yangqiu Song

REFERENCES
[1] Alfonso Amayuelas, Shuai Zhang, Susie Xi Rao, and Ce Zhang. 2022. Neural

Methods for Logical Reasoning over Knowledge Graphs. In The Tenth Interna-
tional Conference on Learning Representations, ICLR 2022, Virtual Event, April
25-29, 2022. OpenReview.net. https://openreview.net/forum?id=tgcAoUVHRIB

[2] Erik Arakelyan, Daniel Daza, Pasquale Minervini, and Michael Cochez. 2021.

Complex Query Answering with Neural Link Predictors. In 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net. https://openreview.net/forum?id=Mos9F9kDwkz

[3] Jiaxin Bai, Xin Liu, Weiqi Wang, Chen Luo, and Yangqiu Song. 2023. Com-

plex Query Answering on Eventuality Knowledge Graph with Implicit Logical

Constraints. arXiv:2305.19068 [cs.CL]

[4] Jiaxin Bai, Zihao Wang, Hongming Zhang, and Yangqiu Song. 2022.

Query2Particles: Knowledge Graph Reasoning with Particle Embeddings. In

Findings of the Association for Computational Linguistics: NAACL 2022. Associ-
ation for Computational Linguistics, Seattle, United States, 2703–2714. https:

//doi.org/10.18653/v1/2022.findings-naacl.207

[5] Jiaxin Bai, Tianshi Zheng, and Yangqiu Song. 2023. Sequential Query Encoding

For Complex Query Answering on Knowledge Graphs. CoRR abs/2302.13114

(2023). https://doi.org/10.48550/arXiv.2302.13114 arXiv:2302.13114

[6] Eda Bayram, Alberto García-Durán, and Robert West. 2021. Node attribute

completion in knowledge graphs with multi-relational propagation. In ICASSP
2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 3590–3594.

[7] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker,

Richard Cyganiak, and Sebastian Hellmann. 2009. Dbpedia-a crystallization point

for the web of data. Journal of web semantics 7, 3 (2009), 154–165.
[8] Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh, Tim Sturge, and Jamie

Taylor. 2008. Freebase: a collaboratively created graph database for structuring

human knowledge. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008,
Jason Tsong-Li Wang (Ed.). ACM, 1247–1250. https://doi.org/10.1145/1376616.

1376746

[9] Xiaojun Chen, Shengbin Jia, and Yang Xiang. 2020. A review: Knowledge reason-

ing over knowledge graph. Expert Syst. Appl. 141 (2020). https://doi.org/10.1016/

j.eswa.2019.112948

[10] Nurendra Choudhary, Nikhil Rao, Sumeet Katariya, Karthik Subbian, and

Chandan K. Reddy. 2021. Probabilistic Entity Representation Model for

Reasoning over Knowledge Graphs. In Advances in Neural Information Pro-
cessing Systems 34: Annual Conference on Neural Information Processing Sys-
tems 2021, NeurIPS 2021, December 6-14, 2021, virtual, Marc’Aurelio Ranzato,

Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman

Vaughan (Eds.). 23440–23451. https://proceedings.neurips.cc/paper/2021/hash/

c4d2ce3f3ebb5393a77c33c0cd95dc93-Abstract.html

[11] Nurendra Choudhary, Nikhil Rao, Sumeet Katariya, Karthik Subbian, and Chan-

dan K. Reddy. 2021. Self-Supervised Hyperboloid Representations from Logi-

cal Queries over Knowledge Graphs. In WWW ’21: The Web Conference 2021,
Virtual Event / Ljubljana, Slovenia, April 19-23, 2021, Jure Leskovec, Marko Gro-

belnik, Marc Najork, Jie Tang, and Leila Zia (Eds.). ACM / IW3C2, 1373–1384.

https://doi.org/10.1145/3442381.3449974

[12] Hanyu Duan, Yi Yang, and Kar Yan Tam. 2021. Learning Numeracy: A Simple

Yet Effective Number Embedding Approach Using Knowledge Graph. In Findings
of the Association for Computational Linguistics: EMNLP 2021, Virtual Event /
Punta Cana, Dominican Republic, 16-20 November, 2021, Marie-Francine Moens,

Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (Eds.). Association for

Computational Linguistics, 2597–2602. https://doi.org/10.18653/v1/2021.findings-

emnlp.221

[13] Alberto García-Durán and Mathias Niepert. 2018. KBlrn: End-to-End Learning of

Knowledge Base Representations with Latent, Relational, and Numerical Features.

In Proceedings of the Thirty-Fourth Conference on Uncertainty in Artificial Intelli-
gence, UAI 2018, Monterey, California, USA, August 6-10, 2018, Amir Globerson and

Ricardo Silva (Eds.). AUAI Press, 372–381. http://auai.org/uai2018/proceedings/

papers/149.pdf

[14] Jia Guo and Stanley Kok. 2021. BiQUE: Biquaternionic Embeddings of Knowledge

Graphs. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic,
7-11 November, 2021, Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and

Scott Wen-tau Yih (Eds.). Association for Computational Linguistics, 8338–8351.

https://doi.org/10.18653/v1/2021.emnlp-main.657

[15] William L. Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure

Leskovec. 2018. Embedding Logical Queries on Knowledge Graphs. In Advances
in Neural Information Processing Systems 31: Annual Conference on Neural In-
formation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman,

Nicolò Cesa-Bianchi, and Roman Garnett (Eds.). 2030–2041. https://proceedings.

neurips.cc/paper/2018/hash/ef50c335cca9f340bde656363ebd02fd-Abstract.html

[16] Zijian Huang, Meng-Fen Chiang, and Wang-Chien Lee. 2022. LinE: Logical

Query Reasoning over Hierarchical Knowledge Graphs. In KDD ’22: The 28th

ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington,
DC, USA, August 14 - 18, 2022, Aidong Zhang and Huzefa Rangwala (Eds.). ACM,

615–625. https://doi.org/10.1145/3534678.3539338

[17] Bhushan Kotnis and Alberto García-Durán. 2019. Learning Numerical Attributes

in Knowledge Bases. In 1st Conference on Automated Knowledge Base Construction,
AKBC 2019, Amherst, MA, USA, May 20-22, 2019. https://doi.org/10.24432/C5Z59Q

[18] Bhushan Kotnis, Carolin Lawrence, and Mathias Niepert. 2021. Answering

Complex Queries in Knowledge Graphs with Bidirectional Sequence Encoders.

In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third
Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021,
Virtual Event, February 2-9, 2021. AAAI Press, 4968–4977. https://ojs.aaai.org/

index.php/AAAI/article/view/16630

[19] Yankai Lin, Zhiyuan Liu, and Maosong Sun. 2016. Knowledge Representation

Learningwith Entities, Attributes and Relations. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY,
USA, 9-15 July 2016, Subbarao Kambhampati (Ed.). IJCAI/AAAI Press, 2866–2872.

http://www.ijcai.org/Abstract/16/407

[20] Lihui Liu, Boxin Du, Heng Ji, ChengXiang Zhai, and Hanghang Tong. 2021.

Neural-Answering Logical Queries on Knowledge Graphs. In KDD ’21: The 27th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event,
Singapore, August 14-18, 2021, Feida Zhu, Beng Chin Ooi, and Chunyan Miao

(Eds.). ACM, 1087–1097. https://doi.org/10.1145/3447548.3467375

[21] Xiao Liu, Shiyu Zhao, Kai Su, Yukuo Cen, Jiezhong Qiu, Mengdi Zhang, Wei Wu,

Yuxiao Dong, and Jie Tang. 2022. Mask and Reason: Pre-Training Knowledge

Graph Transformers for Complex Logical Queries. In KDD ’22: The 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC,
USA, August 14 - 18, 2022, Aidong Zhang and Huzefa Rangwala (Eds.). ACM,

1120–1130. https://doi.org/10.1145/3534678.3539472

[22] Chau Nguyen, Tim French, Wei Liu, and Michael Stewart. 2023. CylE: Cylinder

Embeddings for Multi-hop Reasoning over Knowledge Graphs. In Proceedings of
the 17th Conference of the European Chapter of the Association for Computational
Linguistics, EACL 2023, Dubrovnik, Croatia, May 2-6, 2023, Andreas Vlachos and
Isabelle Augenstein (Eds.). Association for Computational Linguistics, 1728–1743.

https://aclanthology.org/2023.eacl-main.127

[23] Hongyu Ren, Hanjun Dai, Bo Dai, Xinyun Chen, Denny Zhou, Jure Leskovec, and

Dale Schuurmans. 2022. SMORE: Knowledge Graph Completion and Multi-hop

Reasoning in Massive Knowledge Graphs. In KDD ’22: The 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, Washington, DC, USA,
August 14 - 18, 2022, Aidong Zhang and Huzefa Rangwala (Eds.). ACM, 1472–

1482. https://doi.org/10.1145/3534678.3539405

[24] Hongyu Ren, Weihua Hu, and Jure Leskovec. 2020. Query2box: Reasoning over

Knowledge Graphs in Vector Space Using Box Embeddings. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net. https://openreview.net/forum?id=BJgr4kSFDS

[25] Hongyu Ren and Jure Leskovec. 2020. Beta Embeddings for Multi-Hop

Logical Reasoning in Knowledge Graphs. In Advances in Neural Informa-
tion Processing Systems 33: Annual Conference on Neural Information Pro-
cessing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, Hugo

Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and

Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/

e43739bba7cdb577e9e3e4e42447f5a5-Abstract.html

[26] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: a core

of semantic knowledge. In Proceedings of the 16th International Conference on
World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007, Carey L.

Williamson, Mary Ellen Zurko, Peter F. Patel-Schneider, and Prashant J. Shenoy

(Eds.). ACM, 697–706. https://doi.org/10.1145/1242572.1242667

[27] Haitian Sun, Andrew O. Arnold, Tania Bedrax-Weiss, Fernando Pereira, and

William W. Cohen. 2020. Faithful Embeddings for Knowledge Base Queries.

In Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina

Balcan, and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/

hash/fe74074593f21197b7b7be3c08678616-Abstract.html

[28] Dhanasekar Sundararaman, Shijing Si, Vivek Subramanian, Guoyin Wang, Deva-

manyu Hazarika, and Lawrence Carin. 2020. Methods for Numeracy-Preserving

Word Embeddings. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Association for Computational Linguistics,

Online, 4742–4753. https://doi.org/10.18653/v1/2020.emnlp-main.384

[29] Ilya O. Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiao-

hua Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner, Daniel Key-

sers, Jakob Uszkoreit, Mario Lucic, and Alexey Dosovitskiy. 2021. MLP-Mixer:

An all-MLP Architecture for Vision. In Advances in Neural Information Pro-
cessing Systems 34: Annual Conference on Neural Information Processing Sys-
tems 2021, NeurIPS 2021, December 6-14, 2021, virtual, Marc’Aurelio Ranzato,

Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman

Vaughan (Eds.). 24261–24272. https://proceedings.neurips.cc/paper/2021/hash/

cba0a4ee5ccd02fda0fe3f9a3e7b89fe-Abstract.html

https://openreview.net/forum?id=tgcAoUVHRIB
https://openreview.net/forum?id=Mos9F9kDwkz
https://arxiv.org/abs/2305.19068
https://doi.org/10.18653/v1/2022.findings-naacl.207
https://doi.org/10.18653/v1/2022.findings-naacl.207
https://doi.org/10.48550/arXiv.2302.13114
https://arxiv.org/abs/2302.13114
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1016/j.eswa.2019.112948
https://doi.org/10.1016/j.eswa.2019.112948
https://proceedings.neurips.cc/paper/2021/hash/c4d2ce3f3ebb5393a77c33c0cd95dc93-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/c4d2ce3f3ebb5393a77c33c0cd95dc93-Abstract.html
https://doi.org/10.1145/3442381.3449974
https://doi.org/10.18653/v1/2021.findings-emnlp.221
https://doi.org/10.18653/v1/2021.findings-emnlp.221
http://auai.org/uai2018/proceedings/papers/149.pdf
http://auai.org/uai2018/proceedings/papers/149.pdf
https://doi.org/10.18653/v1/2021.emnlp-main.657
https://proceedings.neurips.cc/paper/2018/hash/ef50c335cca9f340bde656363ebd02fd-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/ef50c335cca9f340bde656363ebd02fd-Abstract.html
https://doi.org/10.1145/3534678.3539338
https://doi.org/10.24432/C5Z59Q
https://ojs.aaai.org/index.php/AAAI/article/view/16630
https://ojs.aaai.org/index.php/AAAI/article/view/16630
http://www.ijcai.org/Abstract/16/407
https://doi.org/10.1145/3447548.3467375
https://doi.org/10.1145/3534678.3539472
https://aclanthology.org/2023.eacl-main.127
https://doi.org/10.1145/3534678.3539405
https://openreview.net/forum?id=BJgr4kSFDS
https://proceedings.neurips.cc/paper/2020/hash/e43739bba7cdb577e9e3e4e42447f5a5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e43739bba7cdb577e9e3e4e42447f5a5-Abstract.html
https://doi.org/10.1145/1242572.1242667
https://proceedings.neurips.cc/paper/2020/hash/fe74074593f21197b7b7be3c08678616-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fe74074593f21197b7b7be3c08678616-Abstract.html
https://doi.org/10.18653/v1/2020.emnlp-main.384
https://proceedings.neurips.cc/paper/2021/hash/cba0a4ee5ccd02fda0fe3f9a3e7b89fe-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/cba0a4ee5ccd02fda0fe3f9a3e7b89fe-Abstract.html

Knowledge Graph Reasoning over Entities and Numerical Values KDD ’23, August 6–10, 2023, Long Beach, CA, USA

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is

All you Need. In Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy

Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman

Garnett (Eds.). 5998–6008. https://proceedings.neurips.cc/paper/2017/hash/

3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[31] Po-Wei Wang, Daria Stepanova, Csaba Domokos, and J. Zico Kolter. 2020. Differ-

entiable learning of numerical rules in knowledge graphs. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net. https://openreview.net/forum?id=rJleKgrKwS

[32] Zihao Wang, Weizhi Fei, Hang Yin, Yangqiu Song, Ginny Y. Wong, and Simon

See. 2023. Wasserstein-Fisher-Rao Embedding: Logical Query Embeddings with

Local Comparison and Global Transport. CoRR abs/2305.04034 (2023). https:

//doi.org/10.48550/arXiv.2305.04034 arXiv:2305.04034

[33] Zihao Wang, Yangqiu Song, Ginny Wong, and Simon See. 2023. Logical Message

Passing Networks with One-hop Inference on Atomic Formulas. In The Eleventh
International Conference on Learning Representations.

[34] ZihaoWang, Hang Yin, and Yangqiu Song. 2021. Benchmarking the Combinatorial

Generalizability of Complex Query Answering on Knowledge Graphs. In NeurIPS
Datasets and Benchmarks Track. https://openreview.net/forum?id=pX4x8f6Km5T

[35] Zhaohan Xi, Ren Pang, Changjiang Li, Tianyu Du, Shouling Ji, Feng-

long Ma, and Ting Wang. 2022. Reasoning over Multi-view Knowledge

Graphs. CoRR abs/2209.13702 (2022). https://doi.org/10.48550/arXiv.2209.13702

arXiv:2209.13702

[36] Zezhong Xu, Wen Zhang, Peng Ye, Hui Chen, and Huajun Chen. 2022.

Neural-Symbolic Entangled Framework for Complex Query Answer-

ing. In NeurIPS. http://papers.nips.cc/paper_files/paper/2022/hash/

0bcfb525c8f8f07ae10a93d0b2a40e00-Abstract-Conference.html

[37] Dong Yang, Peijun Qing, Yang Li, Haonan Lu, and Xiaodong Lin. 2022. GammaE:

Gamma Embeddings for Logical Queries on Knowledge Graphs. In Proceedings of
the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP
2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, Yoav Goldberg, Zor-

nitsa Kozareva, and Yue Zhang (Eds.). Association for Computational Linguistics,

745–760. https://aclanthology.org/2022.emnlp-main.47

[38] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos, Ruslan

Salakhutdinov, and Alexander J. Smola. 2017. Deep Sets. In Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Pro-
cessing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, Isabelle Guyon,
Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vish-

wanathan, and Roman Garnett (Eds.). 3391–3401. https://proceedings.neurips.

cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html

[39] Zhanqiu Zhang, Jie Wang, Jiajun Chen, Shuiwang Ji, and Feng Wu. 2021. ConE:

Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs. In Ad-
vances in Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and

Jennifer Wortman Vaughan (Eds.). 19172–19183. https://proceedings.neurips.cc/

paper/2021/hash/a0160709701140704575d499c997b6ca-Abstract.html

[40] Zhaocheng Zhu, Mikhail Galkin, Zuobai Zhang, and Jian Tang. 2022. Neural-

Symbolic Models for Logical Queries on Knowledge Graphs. In International
Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland,
USA (Proceedings of Machine Learning Research, Vol. 162), Kamalika Chaudhuri,

Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (Eds.).

PMLR, 27454–27478. https://proceedings.mlr.press/v162/zhu22c.html

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=rJleKgrKwS
https://doi.org/10.48550/arXiv.2305.04034
https://doi.org/10.48550/arXiv.2305.04034
https://arxiv.org/abs/2305.04034
https://openreview.net/forum?id=pX4x8f6Km5T
https://doi.org/10.48550/arXiv.2209.13702
https://arxiv.org/abs/2209.13702
http://papers.nips.cc/paper_files/paper/2022/hash/0bcfb525c8f8f07ae10a93d0b2a40e00-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/0bcfb525c8f8f07ae10a93d0b2a40e00-Abstract-Conference.html
https://aclanthology.org/2022.emnlp-main.47
https://proceedings.neurips.cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/a0160709701140704575d499c997b6ca-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/a0160709701140704575d499c997b6ca-Abstract.html
https://proceedings.mlr.press/v162/zhu22c.html

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Jiaxin Bai, Chen Luo, Zheng Li, Qingyu Yin, Bing Yin, and Yangqiu Song

Algorithm 1 Ground General Type

Require: 𝐺 is a knowledge graph.

function GroundGeneralType(𝑇, 𝑣)

𝑇 is an arbitrary node of the computation graph.

𝑣 is an arbitrary knowledge graph vertex

if 𝑇 .𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑝 then
𝑢 ← Sample({𝑢 | (𝑢, 𝑣)is an edge in 𝐺})
𝑅𝑒𝑙𝑇𝑦𝑝𝑒 ← type of (𝑢, 𝑣) in 𝐺
if 𝑣 .𝑡𝑦𝑝𝑒 = 𝐸𝑛𝑡𝑖𝑡𝑦 & 𝑢.𝑡𝑦𝑝𝑒 = 𝐸𝑛𝑡𝑖𝑡𝑦 then

𝑃𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑦𝑝𝑒 ← 𝑟𝑝

else if 𝑣 .𝑡𝑦𝑝𝑒 = 𝐸𝑛𝑡𝑖𝑡𝑦 & 𝑢.𝑡𝑦𝑝𝑒 = 𝑉𝑎𝑙𝑢𝑒𝑠 then
𝑃𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑦𝑝𝑒 ← 𝑟𝑎𝑝

else if 𝑣 .𝑡𝑦𝑝𝑒 = 𝑉𝑎𝑙𝑢𝑒𝑠 & 𝑢.𝑡𝑦𝑝𝑒 = 𝐸𝑛𝑡𝑖𝑡𝑦 then
𝑃𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑦𝑝𝑒 ← 𝑎𝑝

else
𝑃𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑦𝑝𝑒 ← 𝑛𝑝

end if
𝑆𝑢𝑏𝑄𝑢𝑒𝑟𝑦 ← GroundGeneralType(𝑇 .𝑐ℎ𝑖𝑙𝑑,𝑢)
return (𝑃𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑦𝑝𝑒, 𝑅𝑒𝑙𝑇𝑦𝑝𝑒, 𝑆𝑢𝑏𝑄𝑢𝑒𝑟𝑦)

else if 𝑇 .𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑖 then
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑠𝑢𝑙𝑡 = (𝑖)
for 𝑐ℎ𝑖𝑙𝑑 ∈ 𝑇 .𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do

𝑆𝑢𝑏𝑄𝑢𝑒𝑟𝑦 ← GroundGeneralType(𝑇 .𝑐ℎ𝑖𝑙𝑑, 𝑣)
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑠𝑢𝑙𝑡 .pushback(𝑐ℎ𝑖𝑙𝑑, 𝑣)

end for
return 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑠𝑢𝑙𝑡

else if 𝑇 .𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑢 then
𝑈𝑛𝑖𝑜𝑛𝑅𝑒𝑠𝑢𝑙𝑡 = (𝑢)
for 𝑐ℎ𝑖𝑙𝑑 ∈ 𝑇 .𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do

if 𝑈𝑛𝑖𝑜𝑛𝑅𝑒𝑠𝑢𝑙𝑡 .𝑙𝑒𝑛𝑔𝑡ℎ > 2 then
𝑣 ← Sample(𝐺)

end if
𝑆𝑢𝑏𝑄𝑢𝑒𝑟𝑦 ← GroundGeneralType(𝑇 .𝑐ℎ𝑖𝑙𝑑, 𝑣)
𝑈𝑛𝑖𝑜𝑛𝑅𝑒𝑠𝑢𝑙𝑡 .pushback(𝑐ℎ𝑖𝑙𝑑, 𝑣)

end for
return𝑈𝑛𝑖𝑜𝑛𝑅𝑒𝑠𝑢𝑙𝑡

else if 𝑇 .𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑒 then
if 𝑇 .𝑡𝑦𝑝𝑒 = 𝐸𝑛𝑡𝑖𝑡𝑦 then

return (𝑒,𝑇 .𝑣𝑎𝑙𝑢𝑒)
else

return (𝑛𝑣,𝑇 .𝑣𝑎𝑙𝑢𝑒)
end if

end if
end function

A SAMPLING ALGORITHM
In this section, we introduce the algorithm used for sampling the

numerical complex queries from a given knowledge graph. The

detailed algorithm is described in Algorithm 1. For a given knowl-

edge 𝐺 and a general query type 𝑡 , we start with a random node

𝑣 to reversely find a query that has answer 𝑣 with the correspond-

ing structure 𝑡 . Basically, this process is conducted in a recursion

process. In this recursion, we first look at the last operation in this

query. If the operation is projection, we randomly select one of

its predecessors 𝑢 that holds the corresponding relation to 𝑣 as

the answer of its sub-query. Then we call the recursion on node 𝑢

and the sub-query type of 𝑡 again. Similarly, for intersection and

union, we will apply recursion on their sub-queries on the same

node 𝑣 . Differently for union, only one of the sub-queries is keeping

𝑢, while the others will use a randomly selected node, due to the

nature of the union operation. The recursion will stop when there

are no more operations for the current node. The specific query

types will be determined according to the relation types during the

process of sampling projection operation.

	Abstract
	1 Introduction
	2 Definition of Numerical CQA
	3 Number Reasoning Network for CQA
	3.1 Computational Graph for NRN
	3.2 Representations and Operations in NRN

	4 Benchmark Construction
	4.1 Knowledge Graphs
	4.2 Query Types
	4.3 Sampling of Complex Attribute Queries

	5 Experiment
	5.1 Baseline Methods
	5.2 Numerical Encoding
	5.3 Evaluation Metrics
	5.4 Experiment Results
	5.5 Computing Time Analysis

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Sampling Algorithm

