
CaPSuLe: A Camera-based Positioning System
Using Learning

Yongshik Moon*‡Soonhyun Noh*‡Daedong Park*‡Chen Luo*†Anshumali Shrivastava†Seongsoo Hong‡Krishna Palem†

‡ Seoul National University
Seoul, Korea.

Email: {ysmoon, shnoh, ddpark, sshong}@redwood.snu.ac.kr

† Rice University
Houston, Texas, USA.

Email: {cl67, anshumali, kpalem }@rice.edu

Abstract—1 We show the first camera based (privacy-
preserving) indoor mobile positioning system, CaPSuLe, which
does not involve any communication (or data transfer) with any
other device or the cloud. The algorithm only needs 78.9MB
of memory and can localize a mobile device with 92.11%
accuracy. Furthermore this is done in 1.92 seconds of on-device
computation consuming 3.77 Joules of energy, as evaluated on
Samsung Galaxy S4 platform. At the core, our solutions uses
a hashing-based image matching algorithm which is more than
500x cheaper, both in energy and computation cost, over existing
state-of-the-art matching techniques. This significant reduction
allows us to perform end-to-end computation locally on the
mobile device. In contrast traditional approaches would consume
2100 Joules and takes more than 1000 seconds with a small
accuracy increase of 0.89%. The ability to run the complete
algorithm on the mobile device eliminates the need for the cloud,
making CaPSuLe a privacy-preserving localization algorithm by
design as it does not require any communication.

I. MOTIVATION

Indoor localization technology is expected to be a 4 billion
dollar industry by 2018 [1]. Increased demand for accurate
indoor localization market is due to venue-based marketing,
poor performance of GPS in indoor environments [2], and
government initiatives in developing positioning systems for
public safety and urban security segments.

GPS signals are blocked indoors and therefore have poor
accuracy. Therefore, there are a variety of algorithms utilizing
other sensors, such as WiFi [3], for estimating the location
indoor. Such algorithms rely on aggregating information from
multiple sensors to get good accuracy, which makes then
expensive and complicated.

Very recently, it was found that an elegant way of localizing
a mobile more accurately is by utilizing the device’s cam-
era [4]. The idea is to match the current image from the camera
with a database of geo-tagged images. Recent advances in
vision have made image matching technology quite accurate,
which makes camera based image positioning a very promising
direction. However, current image matching algorithms are
quite expensive from both latency and energy perspectives,
and therefore they cannot run locally on a mobile device. For
instance, we show that current state-of-the-art image matching

1* indicates equal contribution of authors

algorithm when run on the database of 719 images require
more than 1000 seconds using around 2100 Joules of energy
for getting the current location; entirely impractical for use in
a mobile context. An alternate is to consider a cloud-based
service to perform image matching.

There are three major concerns with cloud-based image
matching: 1) Communication, 2) Energy Consumption and
3) Privacy.

1. Communication: Image matching requires transmitting
the current image from the mobile device to the cloud,
followed by the location, inferred in the cloud and transferred
back. Communication often has unpredictable latency, as it
requires WiFi, cellular networks, etc.

2. Energy Consumption: Image matching is an expensive
operation. The cloud-based service even if very fast, is likely
to consume a significant amount of energy. Thus cloud-based
image matching service is not a sustainable solution.

3. Privacy: Transfer of data back and forth to the cloud
compromises the privacy of user’s information. It opens the
possibility of potential privacy breaches.

Hope: Trading (insignificant) Quality for Energy. The
philosophy of trading (a small amount of) quality for sig-
nificant gains in energy has recently gained significant at-
tention [5]–[7]. Capitalizing on this energy-quality tradeoff is
deemed to be a future of SoC technology [8]. Here, we provide
a concrete demonstration of this philosophy. Our proposed
end-to-end system shows that by trading a small amount of
accuracy we can get away with all the three shortcomings,
as mentioned earlier, associated with the cloud-based image
matching techniques.

Our Contributions: We propose CaPSuLe for image based
device positioning, a first of its kind system, which is free from
all the three problems of communication, energy consumption,
and privacy. At the heart of CaPSuLe lies an approximate
image matching algorithm, based on fast locality sensitive
hashing, which is more than 500x times cheaper than state-
of-the-art image matching algorithm. Such a significant gain
in computation and energy cost is a result of careful choices
of hash tables, hash functions, and related operations. This
massive reduction allows us to perform end-to-end image
matching on the mobile device itself. Our algorithm takes 1.92



seconds requiring 3.78 Joules energy on Samsung Galaxy S4
archiving 92.11% accuracy in estimating the location. Since all
computations are local and are performed on the device, our
algorithm is free from privacy infringements as no information
is transmitted. We hope that our work will lead to many new
energy efficient machine learning algorithms where the need
for cloud computing can be eliminated.

II. DEVISE POSITIONING VIA IMAGE MATCHING

Image based positioning system [4], [9] takes the current
picture of the location and matches it with images in a
pre-collected database of geo-tagged images of the area of
the building such as a shopping mall. The location of the
matched image is deemed to be the current position of the
device. The key observation is that building a densely sampled
dataset consisting of images, tagged with their geo-location at
different places in the indoor environment is a relatively easy
task with the surge in the number of images. The accuracy of
the system is then directly dependent on the ability to identify
the right matching image in the database, which is a classical
computer vision problem.

Formally, we are given a collection of geo-tagged images
C consisting of images from the given indoor environment,
e.g., shopping mall, campus, etc., where the device needs to
be positioned. By using its camera, we create a query image
q. The goal of the image matching algorithm is the find an
image I ∈ C which maximizes the “similarity” with the query
q. Formally,

I = argmin
I∈C

Sim(q, I) (1)

The critical vision component in Equation 1 is the design of
the similarity function or Sim(., .) which captures the notion
of semantic similarity between different images. Sim(., .)
must tolerate variations in pose, resolutions, shifts, etc [10],
[11]. For better demonstration of the challenges associated
with the state of the art, we first describe our setting and the
dataset:

A. Dataset and Settings

We chose the LOTTE Department Store main branch, which
is a major shopping mall in Seoul, Korea, for our positioning
system. We collected a total of 871 images of different shops
in the mall. Images were collected by using Naver Indoor
Maps [12]. Besides, to get a good coverage of the mall, we
also manually took pictures of stores by a cellphone camera.
Overall, we covered 45 different location in the shopping mall.
The images are taken with varying poses and lighting to ensure
that the datasets reflect the real settings. Also, two separate
sources of images make the setting more real and free of
common bias.

Each image is annotated with its corresponding locations.
We further downscaled each image to 640×360 pixels to re-
duce the computational cost associated with matching without
significant loss of accuracy. Such downsampling of images
are commonly adopted in many real applications [13]. For
evaluation, we partition the data into two sets: 719 training

Fig. 1: Example Query and returned matches image by CaP-
SuLe system. The match is with varying pose and orientations
showing the complexity of our dataset.

and 152 query images. Figure 1 shows some query images
and the matched training images for these query images using
our CaPSuLe system. We can clearly see the complexity of
the problem as the matching images can have varying poses.

B. Device and Platform

We use aSamsung Galaxy S4 smartphone with Android
5.0.1 Lollipop running with a Linux kernel 3.4.5. The smart-
phone has an ARM processor that consists of four Cortex-A15
cores and 2 GB DRAM. We additionally used a Monsoon
Power Meter to measure the power consumption of the smart-
phone. The detailed hardware and software configuration of
the target system is shown in Table I.

C. The Image Matching Problem and its Computational (En-
ergy) Barrier

With advancements in vision technology, image matching
is quite accurate. However, they are far from being cheap.
Modern matching algorithms require costly similarity measure
Sim for good accuracy. Such expensive computations cannot
be performed on the device because of their significant com-
putational requirements. We elaborate our baselines which is
the state-of-the-art algorithm, as implemented in the widely
used OpenCV package [10], [11], for computing Equation 1.

The similarity measure, Sim(., .), used in the OpenCV
package leads to 93% accuracy on our dataset. Other similarity
measures based on Euclidian distance over Bag-of-Words

TABLE I: Target System Description

Hardware

System on Chip Exynos 5410 Octa

CPU Quad-core 1.6 GHz Cortex-A15

Main Memory 2GB

Storage 16 GB NAND Flash

Software
OS Kernel Linux kernel version 3.4.5

Android Framework Android 5.0.1

OpenCV OpenCV 3.1 for Android



(BoW) only yields 75% or less accuracy because our dataset
contains many variations seen in the real environment which
is not adequately captured by BoW methods.

OpenCV implementation for determining the similarity be-
tween the query q and any given image I ∈ C requires the
following three steps:

1. Extract Features from Images: The first step is to
extract a set of SURF [14] features from both the q and
I . Each of these features is a 64-dimensional vector. In
our system, we used 512 SURF features. We thus get 512
different 64-dimensional SURF features from each image.
SURF features are the best-known features invariant to scale
and other spurious transformations such as rotations. It is
further known that SURF performs even better than traditional
SIFT features [15]. Note, for every image I in the given
training collection C, feature extraction is done off-line. For
the query, however, feature extraction needs to be done on the
fly.

2. Threshold all pairwise features: The Euclidian distance
between all possible feature combinations between q and I is
then computed. This requires 512 × 512 Euclidian distance
computations between 64 dimensional vector from q and I ,
totalling 512× 512× 64 multiplications.

3. Compute the Similarity Values: The final score is the
number of distances out of 512 x 512, which are smaller than
a threshold. Roughly, this similarity measure scores based on
the number of cross matches from the 512 different SURF
features between the query and the image I .

The bottleneck is step number 2 which requires 512×512×
64 > 16 million multiplications for computing the similarity
between the query and one image I ∈ C. Thus, for 719 images
in our datasets, a single query requires (512×512×64×719)
more than 12 billion multiplications. If we plan to run this
amount of computation on the mobile device, then to reiterate
a single query takes more than 1030 seconds consuming more
than 2100 Joules of energy. Step 2 is the primary reason why
current image-based positioning algorithm needs the cloud
to perform matching in reasonable time. However, as argued
before, the cloud-based solution has many shortcomings. We
will refer this as the Bruteforce Method.

D. Clustering (Bag-of-Words (BoW), sparse coding, etc.) does
not seem to help

It might seem that step 2, requiring 512 × 512 distance
computation can be side-stepped. The other most popular
feature representation which does not require 512 × 512
distance calculation is the BoW [16] (or sparse coding [17])
feature representation. BoW tries to eliminate the need for
multiple comparisons by pre-clustering all the extracted 512
SURF features. After clustering, BoW calculates the distances
between all feature vectors of the current image and the
cluster centers. BoW then produces a histogram expressing
the closeness between cluster centers and the training image’s
SURF feature vectors. Image matching is finally performed by
comparing the query image’s histogram and the stored training
image’s histograms. This process is relatively cheap. However,

it comes with a significant loss in accuracy. With our dataset,
this approach barely reached 75% even with as many as 1000
clusters. Changing the cluster size of 5000 has no effect on
accuracy.

Image matching is a harder task than object detection. For
instance, two images may have the same categorical object
(such as a chair), but they may not match with each other.
This is probably the main reason why BoW is more common
for object detection rather than image matching and popular
state-of-the-art package OpenCV [10] implements more costly
matching algorithms described earlier.

III. HOPE: PROBABILISTIC HASHING ALGORITHMS

However, if we are willing to relax the need for accuracy
by a small amount, then the picture changes completely. In
particular, we will use the cheap Locality Sensitive Hashing
algorithms combined with the careful choice of hash functions
and estimation procedure to get more than 500x reduction in
the computational and the energy cost.

Locality Sensitive Hashing (LSH) [18], [19] is popular for
efficient sub-linear time matching. LSH generates a random
hash map h which takes the input (usually the data vector)
and outputs a discrete (random) number. For two data vectors
x and y, the event h(x) = h(y) is called the collision (or
agreement) of hash values between x and y. The hash map has
the property that similar data vectors, in some desired notion,
have a higher probability of collisions than non-similar data
vectors. Informally, if x and y are similar, then h(x) = h(y) is
a more likely event, while if they are not similar then h(x) 6=
h(y) is more likely. The output of the hash functions is a noisy
random fingerprint of the data vector [20]–[22], which being
discrete is used for indexing training data vectors into hash
tables. These hash tables represent an efficient data structure
for matching [18] and learning [23], [24].

The fundamental observation is that in Step 2 of image
matching (Section II-C), for every SURF feature of the query
image q, we search for matching SURF features from image I .
This matching can be made efficient using hashing. However,
only performing fast near neighbor search with hashing does
not yield the desired benefit. It further requires many careful
choices which we describe in the next section.

IV. THE CAPSULE SYSTEM: NEAR-CLOUD
PERFORMANCE WITH ON-DEVICE COMPUTATION.

Our CaPSuLe system is summarized in Figure 2. At the
heart of our system lies a set of lightweight hash tables which,
for a given SURF feature of a query image, finds all the
potential matching SURF features from the training set. This
search is done in near-constant time, by querying hash tables
indexed by LSH, which saves a significant amount of compu-
tational (and hence energy) overhead without compromising
the accuracy.

CaPSuLe uses two parameters K and L which trades
accuracy for gains notably in energy and in computational
time. The algorithm works in two main phases [25] for device
positioning. We first describe the two phases, and later we



Fig. 2: The preprocessing and positioning phase of CaPSuLe.

provide more details about the design choices.
1) Preprocessing Phase (Offline): In the offline phase, fol-
lowing step 1 in Section II, we extract 512 SURF features (64
dimensional) from each geo-tagged image I in the training
collection C. We then create L different hash tables of size
2K , i.e., K-bit keys (or indices). For every 512 SURF feature
of I , we map it to a K-bit signature Hj(I), using some LSH
scheme Hj , for j ∈ {1, 2, ..., L}. Image I is then placed into
hash table number j indexed by the K-bit signature Hj(I) (as
the key). Thus, every image is mapped to 512 keys (can be
duplicate) in each of the L hash tables. The preprocessing step
thus generates L independent hash tables.
2) Query Phase (Online): Given a query image q, we again
extract 512 SURF features (64 dimensional each). For each
of these 512 SURF features, we retrieve the bucket associated
with the key Hj(q) in hash table j. Overall, we get 512× L
keys and probe the corresponding buckets (values) in the
associated hash tables. Every image is then ranked based on
the number of times it is observed in the 512 × L buckets.
The location of the top ranked image is returned as the current
location as the final answer.
In this methodology, we made five novel and careful choices in
CaPSuLe, all of which are critical. The system is prohibitively
expensive if we remove any of the five choices. These choices
are as follows:
1. Reduce Hashing Cost: The cost of computing L different
K-bit hashes is expensive with popular LSH schemes such as
signed random projections [26]. In particular, traditional LSH
requires K × L × 512 × 64 multiplications for computations
of all the hashes (also the keys), which is very expensive.
We instead used a cheap and sparse variant as described
in [27] which reduces the total hashing cost per query to
1
3 (K×L×512×64) additions/subtractions. This is a significant

reduction also since multiplications are costlier than additions.
2. Buckets of Bit Arrays: Our hash tables need to store
multiple images for every key. Even if we store only integer
image IDs, the cost is significant. Since we have 719 images,
we store a 719-bit array indexed by the K-bit key (2K values).
If image numbered ni gets a particular key, we simply set the
bit numbered ni in the bit-array associated with the key as
shown in Figure 2. This idea leads to around 32x reduction
in the hash table size compared to the traditional scheme.
Furthermore, we remove any memory associated with empty
buckets during preprocessing to avoid unnecessary memory
usage.
3. Cheap and Crude Ranking Estimation based on Bucket
Matches: Hashing reports many images (sometimes multiples
of a 100) as potential matches. For computing the best
match, the recommended option in the literature is to rank
candidates using the similarity function Sim. However, as
argued in Section II, computing Sim is expensive. We utilize
the property of LSH, and cheaply estimate the ranking by
counting the number of times an image is hit by the query.
Estimation using LSH signatures are significantly cheaper than
similarity computation as reported in [28].
4. Ignoring Noisy Buckets: As our hash functions are cheap,
there is a significant possibility that individual key values are
likely due to bias in the LSH functions. Such bias will make
some of the buckets unnecessarily crowded. Crowded buckets
increase the computational time and energy since the algorithm
retrieves unnecessary candidates. To eliminate this issue, we
ignore buckets (treat it as empty) if they are overcrowded.
5. Reducing Main Memory: Although hash tables are signif-
icantly small (few hundred MBs), for mobile devices, loading
all of them in main memory is still a concern. Our hash
tables are organised into contiguous buckets, i.e., 2K indices



each of 719 bits (see Figure 2) We, therefore, store the hash
tables in device memory and load the L buckets (719 bits
for each bucket) on demand during runtime (using the fseek
function) without noticeable I/O overhead. This ensures that
our application needs low main memory.

A. Dynamic Updates

One of the unique characteristics of CaPSuLe is that it can
be incrementally updated. In particular, adding/deleting images
to/from the database with only amounts to flipping a few
bits, to add the new image (with labels) in the corresponding
buckets, into the appropriate hash table. Thus, increasing
the number of images or locations can be handled with no
modification to the algorithm and minimal change to the data
structure.

V. EVALUATIONS OF CAPSULE

We implemented CaPSuLe on the platform described in
Figure 1. We evaluate CaPSuLe on four metrics: 1) Re-
sponse Time, 2) Energy Consumption, 3) Accuracy and 4)
Main Memory. Response time and energy consumption are
measured for the complete end-to-end process, i.e., including
the feature extraction, retrieval, and final ranking. Accuracy
is measured over the test set as the percentage of time the
algorithm identifies the correct location. Main memory usage
is the amount of DRAM used. It is imperative that all of
these four metrics are properly balanced for the system to
be practical.

Cost-Quality Tradeoff through K and L: There are
two main parameters in the CaPSuLe system, K, and L. To
reiterate, K determines the range of the hash table (K-bits),
which is also its size. L specifies the number of hash tables.
K and L are the knobs which give us finer control over the
cost-quality tradeoff. If we increase K and L, the recall is
better, but the space required grows significantly.

See Figure 3 for the plot of memory utilization with varying
K. If we use K = 24 the amount of main memory needed
by a single hash table easily grows to around 1GB which
for L > 1 hash tables is infeasible. If we lower K, then
the accuracy drops by around 10%. We found that other than
memory, the computational, energy, and response time costs
are not sensitive to variations in K and L. Memory-accuracy
is the main tradeoff. We found K = 22 and L = 24 to be the
sweet-spot that balances both accuracy and memory nicely.
Our system uses these values for K and L. Note, we have
two parameters which can be tuned offline.

Competing Solutions: Our primary goal is to approximate
the accuracy of the brute force algorithm described in Sec-
tion II-C. However, we want our solution to run with limited
energy, memory, and latency range, which are crucial for a de-
vice positioning system. Our primary baseline is, therefore, the
bruteforce algorithm in the state-of-the-art package OpenCV.

In addition to bruteforce and CaPSuLe, we tried two clas-
sical and cheaper baseline approaches:

1) BoW based image matching: As described in Sec-
tion II-D, we used popular BoW based features which exploit

Fig. 3: The required memory/(main memory) with varying K.
We load the buckets in main memory on demand.

TABLE II: Evaluations for CaPSuLe and Bruteforce

K22L24 Bruteforce

Accuracy 92.11% 93.42%

Energy Consumption 3.78J 2103.22J

Response Time 1.92sec 1030.43 sec

Required Storage Space 294.39MB 363MB

Required Memory Space 78.90MB 171.41MB

clustering over SURF features to make matching efficient.
However, there is a significant drop in the accuracy in this
case. With 1000 Bag-of-words (or cluster centers), we could
barely achieve 75% accuracy even after fine tuning. Increasing
BoW to 5000 lead to no significant gains.

2) Supervised Learning. We tried another possibility of
treating location identification as a multi-class classification
problem. We treat each location as a class label and use train-
ing images labeled with the location as the standard supervised
multi-class classification. However, supervised learning fails to
achieve more than 80% of accuracy. We used VLFeat [29], an
open source package for image classification in this experi-
ment.

A. Performance Summary

We used K = 22 and L = 24 for our settings. The response
time and energy consumption for bruteforce and our approach
are evaluated.
1) Accuracy: For our dataset, the accuracy of bruteforce
is 93%, Bow 75%, supervised learning 77% and CaPSuLe
92.11%, as shown in Figure 4. Bruteforce method yielded
the highest accuracy among three methods, while CaPSuLe
is very close- off by only 0.89%. This phenomenon is not
surprising as our approach is approximation of the Bruteforce
method. BoW and supervised learning methods have poor
performance, and therefore, we do not evaluate their time and
energy consumption.
2) Response Time: We estimated the response time of Brute-
force and CaPSuLe. The response time using the Bruteforce
method is 537 times more than CaPSuLe on the target mobile
device. CaPSuLe takes only 1.92 seconds in the positioning
phase on the device. However, the response time using the



Fig. 4: The accuracies of bruteforce, BoW and CaPSuLe.

Fig. 5: Energy consumption Vs response time.

Bruteforce method is 1030.43 seconds in the online phase,
which is unacceptable.
3) Energy Consumption: The Bruteforce method requires
2103.22J on our mobile system in the online phase. This
amount of energy consumption further makes current algo-
rithms non-sustainable. However, CaPSuLe consumed mere
3.78J for localization, which is 557x smaller than Bruteforce
method.

The energy-time comparisons are illustrated in Figure 5. The
overall comparison between CaPSuLe and the state-of-the-art
Bruteforce matching algorithm on our platform and dataset
are summarized in Table II. By sacrificing only 0.89% of the
accuracy, CaPSuLe is 537 times faster in the response time
and 557 times cheaper in energy consumption.

VI. CONCLUSION

It is widely assumed that cloud-based Machine Learning
Solutions are the future. However, cloud-based applications
are not ideal for the societal problem of sustainability and
privacy. We have shown that by trading a small (insignificant)
amount of quality, modern machine learning solutions can be
made private and sustainable, thus eliminating the need for
the cloud. We capitalize on the cost-quality control provided
by randomized hashing algorithms and demonstrate an end-to-
end indoor camera-based positioning system CaPSuLe which
can localize a mobile device, with 92.11% accuracy, in 1.92
seconds of local (on-device) computations consuming 3.78
Joules of energy, using a Samsung Galaxy S4 platform.

With the ever increasing computational power of mobile
devices, we believe that such cloud-independent private and
sustainable solutions are the future of SoCs. We hope many
works will follow this line of thought.

ACKNOWLEDGMENT

Dr. Krishna Palem and Dr. Anshumali Shrivastava would
like to acknowledge the support of DARPA Grant FA8750-
16-2-0004.

REFERENCES

[1] J. Liu, “Survey of wireless based indoor localization technologies,” 2014.
[2] R. Mautz, “The challenges of indoor environments and specification on

some alternative positioning systems,” in Positioning, Navigation and
Communication, 2009. WPNC 2009. 6th Workshop on. IEEE, 2009,
pp. 29–36.

[3] Z. Farid, R. Nordin, and M. Ismail, “Recent advances in wireless indoor
localization techniques and system,” Journal of Computer Networks and
Communications, vol. 2013, 2013.

[4] J. Z. Liang, N. Corso, E. Turner, and A. Zakhor, “Image based local-
ization in indoor environments,” in Computing for Geospatial Research
and Application (COM. Geo), 2013 Fourth International Conference on.
IEEE, 2013, pp. 70–75.

[5] K. V. Palem, “Inexactness and a future of computing,” Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences, vol. 372, no. 2018, p. 20130281, 2014.

[6] J. Markoff, “A climate-modeling strategy that won’t hurt
the climate,” http://www.nytimes.com/2015/05/12/science/
inexact-computing-global-warming-supercomputers.html, 2015.

[7] K. V. Palem, “Computational proof as experiment: Probabilistic algo-
rithms from a thermodynamic perspective,” in Verification: Theory and
Practice. Springer, 2003, pp. 524–547.

[8] ——, “Energy aware computing through probabilistic switching: A
study of limits,” IEEE Transactions on Computers, vol. 54, no. 9, pp.
1123–1137, 2005.

[9] H. Kawaji, K. Hatada, T. Yamasaki, and K. Aizawa, “Image-based
indoor positioning system: fast image matching using omnidirectional
panoramic images,” in Proceedings of the 1st ACM international
workshop on Multimodal pervasive video analysis. ACM, 2010, pp.
1–4.

[10] Itseez, “Open source computer vision library,” https://github.com/itseez/
opencv, 2015.

[11] The OpenCV Reference Manual, 2nd ed., Itseez, April 2014.
[12] http://map.naver.com/.
[13] A. Youssef, “Image downsampling and upsampling methods.”
[14] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust

features,” in European conference on computer vision. Springer, 2006,
pp. 404–417.

[15] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, vol. 60, no. 2, pp. 91–110,
2004.

[16] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual
categorization with bags of keypoints,” in Workshop on statistical
learning in computer vision, ECCV, vol. 1, no. 1-22. Prague, 2004,
pp. 1–2.

[17] H. Lee, A. Battle, R. Raina, and A. Y. Ng, “Efficient sparse coding
algorithms,” in Advances in neural information processing systems,
2006, pp. 801–808.

[18] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards
removing the curse of dimensionality,” in STOC, Dallas, TX, 1998, pp.
604–613.

[19] A. Shrivastava, “Probabilistic hashing techniques for big data,” Ph.D.
dissertation, CORNELL UNIVERSITY, 2015.

[20] J. L. Carter and M. N. Wegman, “Universal classes of hash functions,”
in STOC, 1977, pp. 106–112.

[21] M. O. Rabin, “Fingerprinting by random polynomials,” Center for
Research in Computing Technology, Cambridge, MA, Tech. Rep. TR-
15-81, 1981.

[22] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching
algorithms,” IBM Journal of Research and Development, vol. 31, no. 2,
pp. 249–260, 1987.

[23] R. Spring and A. Shrivastava, “Scalable and sustainable deep learning
via randomized hashing,” arXiv preprint arXiv:1602.08194, 2016.

[24] P. Li, A. Shrivastava, J. Moore, and A. C. König, “Hashing algorithms
for large-scale learning,” in NIPS, Granada, Spain, 2011.

[25] A. Andoni and P. Indyk, “E2lsh: Exact euclidean locality sensitive
hashing,” Tech. Rep., 2004.



[26] A. Shrivastava and P. Li, “Densifying one permutation hashing via
rotation for fast near neighbor search,” in ICML, Beijing, China, 2014.

[27] D. Achlioptas, “Database-friendly random projections,” in PODS, Santa
Barbara, CA, 2001, pp. 274–281.

[28] A. Shrivastava and P. Li, “Fast near neighbor search in high-dimensional
binary data,” in ECML, Bristol, UK, 2012.

[29] A. Vedaldi and B. Fulkerson, “VLFeat: An open and portable library of
computer vision algorithms,” http://www.vlfeat.org/, 2008.


