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ABSTRACT

Anomaly detection is one of the frequent and important subroutines

deployed in large-scale data processing applications. Even being a

well-studied topic, existing techniques for unsupervised anomaly

detection require storing significant amounts of data, which is pro-

hibitive from memory, latency and privacy perspectives, especially

for small mobile devices which has ultra-low memory budget and

limited computational power. In this paper, we propose ACE (Ar-

rays of (locality-sensitive) Count Estimators) algorithm that can be

60x faster than most state-of-the-art unsupervised anomaly detec-

tion algorithms. In addition, ACE has appealing privacy properties.

Our experiments show that ACE algorithm has significantly smaller

memory footprints (< 4MB in our experiments) which can exploit

Level 3 cache of any modern processor. At the core of the ACE

algorithm, there is a novel statistical estimator which is derived

from the sampling view of Locality Sensitive Hashing (LSH). This

view is significantly different and efficient than the widely popular

view of LSH for near-neighbor search. We show the superiority of

ACE algorithm over 11 popular baselines on 3 benchmark datasets,

including the KDD-Cup99 data which is the largest available public

benchmark comprising of more than half a million entries with

ground truth anomaly labels.

1 INTRODUCTION

The problem of anomaly (or outlier) detections is the task of identi-

fying instances (or patterns) in data that do not conform to the ex-

pected behavior [9]. These non-conforming examples are popularly

referred to as anomalies, or outliers, sometimes interchangeably.

Anomaly detection can be either supervised [28] or unsuper-

vised [20]. Supervised anomaly detection leverages machine learn-

ing algorithms, such as classification, over datasets labeled as anoma-

lous or non-anomalous. However, there are three major issues with

supervised anomaly detection algorithms: 1) In most applications,

label information about anomalies is not available; 2) Anomalies are

rare, and hence there is a huge class imbalance, and 3) Supervised

algorithms need to be re-trained for drifting data distributions with

new label information. Drifting data distribution is quite common

in big-data systems, where supervised re-training is prohibitive.

Therefore, we are interested in unsupervised anomaly detection

which does not require any label information, and which can au-

tomatically deal with changes in data distributions over time. We
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briefly describe some of the modern challenges for unsupervised

anomaly detection that we will address in this work.

Challenge 1: High-Speed Drifting Data: Many applications

demand fast-response and real-time inference from dynamic and

drifting high volumes of sensor data over time. Most anomaly de-

tection applications, for example over the web-network servers,

require dealing with unprecedented amounts of data in a fraction

of seconds. The data distribution is constantly changing, and it is

often bursty [25, 29]. Detecting anomaly events in real-time, such

as DDoS (Distributed Denial of Service) attacks, network failures,

etc., is highly beneficial in monitoring network performance.

Challenge 2:Ultra-LowMemoryBudget: Inmany high-speed

streaming applications, such as High Energy Physics (HEP) and

network servers, any algorithm requiring to store and process a

significant fraction of data is prohibitive. Another critical pushing

need for ultra-low memory algorithm is anomaly detection on mo-

bile phones or smart sensors. Algorithms which require significant

resources are prohibitive for low-resource platforms.

Challenge 3: Anomaly Detection on the Edge (Mobile De-

vices): Anomaly detection on portable devices or mobile devices

often requires dealing with high-speed drifting data, low-memory,

and in addition ultra-low power. A modern smartphone usually

only have a relatively small memory capacity (1,2 Gigabytes) and

limited computational power. Battery life is a significant concern,

and transmitting data to cloud for analysis has privacy risks as well

as are not sustainable due to their energy demands. With the accel-

erated adoption of 4G (or 5G) technologies including WiMAX and

LTE, cellular devices will become the primary means of broadband

Internet access for many users. According to the report from Cisco,

Global mobile data traffic reached 7.2 exabytes per month at the end

of 2016 [14]. Thus, the traffic data that is monitored, or generated,

by the mobile devices are extremely high-speed and enormous, and

it is hopeless to rely on anomaly detection methods which require

consulting a significant fraction of the data. Unfortunately, most un-

supervised anomaly detection techniques are near-neighbor based

and require querying, and hence the prohibitive storage of the

historical data.

Challenge 4: Privacy: As the IoT becomes more widespread,

consumers must demand better security and privacy protections

that do not leave them vulnerable to corporate surveillance and data

breaches. Thus, storing a significant fraction of data for finding

anomalous behavior is prohibitive. Privacy-preserving anomaly

detection is a challenging problem in itself [7].

The significance and the impact of the above challenges have put

high-speed data mining among the top-10 big-data challenges [46],

which will also be the focus of the present work.
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PopularApproaches forUnsupervisedAnomalyDetection:

There are numerous methods for unsupervised anomaly detection

in literature. We review and compare with 11 of these popular meth-

ods in our experiments. Unsupervised anomaly detection can be

broadly categorized into two categories: 1) Near-Neighbor (NN)

Based and 2) Aggregate Statistics (or score) based. NN based ap-

proaches typically define the outlier score of a point q based on

the difference between q’s own behavior and the behavior of q’s
near-neighbors. The first category is the most common category.

Aggregate statistics based methods, on the other hand, define

the outlier score of a point q based on the expected behavior of

a global function S(q,D) of the data D, relative to q. A notable

method among them is ABOD (Angle-based outlier detection) [32].

ABOD computes the variance of the angle formed by different pairs

of points, in the dataset, incident on the point of interest q. It is
expected that the outliers will have a small variance [32].

There are several implementations of existing anomaly detection

algorithms. A notable among them is the ELKI package [1] which is

currently one of the most efficient and popular packages for outlier

detection because of highly optimized implementations.

Both categories of anomaly detection algorithms require storing

the complete dataset to either compute near-neighbor or the desired

statistics from the data. The bottleneck computational cost is at

least one pass over the data to either calculate the near-neighbor

or the statistics. Thus, these methods have poor computational and

memory requirements. Furthermore, change in the distribution of

data requires storing and processing a larger set of observations.

Sampling and FastNear-Neighbors:Towork around the com-

putational requirements it is natural to resort to fast alternatives [8].

There are plenty of techniqueswhich exploits efficient near-neighbor

capabilities to speed up NN. However, they still require storing the

data in the memory. Even with the computational speedups, the

methodologies are still slow for ultra-high speed data mining, as

an accurate near-neighbor search over large data is costly.

Relying on random sampling and projections of the data to esti-

mate the aggregate statistics efficiently is not new [9]. For example,

recently, [32] showed that using smart random sampling and hash-

ing algorithms, we can speed up the anomaly detection and also

reduce the memory requirement. Instead of storing all the data

points, we only need few random samples and their quantized pro-

jections. They proposed FastVOA which uses a modified ABOD

statistics that can be estimated in near-constat time and is as good

as ABOD for anomaly detection.

However, these approximation methods still require storing a

significant number of data samples, which makes the algorithm

slow and prohibitive from privacy perspective. FastVOA involves

various computation of medians and other costly statistics. Our

experiments show that the sampling based FastVOA approach is

significantly slower than fast NN based alternatives.

There is a third category of anomaly detection algorithms over

a sliding window in data streams [44]. The notions of anomalies

in these algorithms are confined to a given fixed-size window over

time. Not surprisingly, if the size of sliding window is increased

to take into account large amounts of data, we again observe the

same memory and latency issues. The focus of this paper is on

unsupervised outlier detection, where the notion of anomaly is

with respect to the compete data and not constrained to a limited

sliding window.

Our Contributions: We propose a family of statistics which

provides a “sweet" spot between the ability to discriminate anom-

alies and the resource efficiency. These special statistics, due to

their form, can be efficiently computed in ultra-low memory, and

they do not require storing even a single data sample. Furthermore,

any updates to the data can be incorporated on the fly making

our proposal ideal for high-speed data applications. The proposed

algorithm, in addition, has strong privacy properties making it ideal

for IoT (Internet of Things) setting.

Our proposed family of statistics are derived from the collision

probability of locality sensitive hashing (LSH) functions. We show

that these classes of statistics have strong discriminative property

for identifying outliers and most importantly, it can be accurately

estimated using Arrays of Count Estimators (ACE), a novel and

tiny LSH based data structure. Designing these estimators requires

using the sampling view of LSH rather than the widely popular

near-neighbor search view. To the best of our knowledge, this is

the first use of LSH counts as unbiased estimators of outlierness.

We demonstrate, empirically and theoretically, that the proposed

LSH based count estimators are significantly more accurate than

random sampling approaches. Our ACE algorithm only requires

computing few locality sensitive hashes of the data and a small set

of count array lookups to estimate the proposed statistics sharply.

Our approach does not require even a single distance computation.

The theory and the class of estimators presented in the paper, could

of independent interest in itself.

We demonstrate rigorous experimental evidence on three public

outlier detection benchmarks including the largest publicly avail-

able benchmark dataset KDD-cup99 HTTP dataset having more

than half a million labeled instances. Empirically, our algorithm

only requires around 4MB of memory and near-constant amount of

computations, for all the three benchmark datasets. Thus, we can

exploit fast L3 caches (Level 3 caches), which can be significantly

faster than dealing with main memory.

We provide a comparison of our algorithm with 11 different

methodologies, which include some of the fastest and most popular

anomaly detection algorithms. Our experiment shows that we are

around at least 60x faster than of the best performing competitor on

the largest benchmark KDD-cup99 HTTP dataset. This disruptive

speedup is not surprising given the computational simplicity of our

algorithm and ultra-low memory print.

2 BACKGROUND: LOCALITY SENSITIVE
HASHING

Locality-Sensitive Hashing (LSH) [22] is a popular technique for

efficient approximate nearest-neighbor search. LSH is a family of

functions, such that a function uniformly sampled from this hash

family has the property that, under the hashmapping, similar points

have a high probability of having the same hash value. More pre-

cisely, consider H a family of hash functions mapping RD to a

discrete set [0,R − 1].
Definition 2.1. Locality Sensitive Hashing (LSH) Family A

family H is called (S0, cS0,u1,u2)-sensitive if for any two points

x ,y ∈ Rd and h chosen uniformly fromH satisfies the following:

• if Sim(x ,y) ≥ S0 then PrH(h(x) = h(y)) ≥ u1
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• if Sim(x ,y) ≤ cS0 then PrH(h(x) = h(y)) ≤ u2

A collision occurs when the hash values for two data vectors are

equal, meaning that h(x) = h(y).
LSH is a very well studied topic in computer science theory and

database literature. There are a number of well-known LSH families

in the literature. Please refer [17] for details. The most popular one

is Signed Random Projections [11].

Signed Random Projections(SRP) is an LSH for the cosine simi-

larity measure, which originates from the concept of randomized

rounding (SRP) [11, 18, 30]. Given a vector x , SRP utilizes a ran-

domw vector with each component generated from i.i.d. normal, i.e.,

wi ∼ N (0, 1), and only stores the sign of the projection. Formally

SRP family is given by

hw (x) = siдn(wT x). (1)

It was shown in the seminal work [18] that collision under SRP

satisfies the following equation:

Prw (hw (x) = hw (y)) = 1 − θ

π
, (2)

where θ = cos−1
(

xT y
| |x | |2 | |y | |2

)
.

xT y
| |x | |2 | |y | |2 , is the cosine similarity.

If we generate K independent SRP bits, by samplingw indepen-

dently k times, and use the generated K-bit number as the new

hash function H , then the new collision probability is

Pr (H (x) = H (y)) = (1 − θ

π
)K (3)

by the simple multiplicative law of probability. We will be using

this observation heavily in our work.

Over the last decade, there has been a significant advancement in

reducing the amortized computational and memory requirements

for computing several LSH signatures of the data vector. For ran-

dom projections based LSH, of which signed random projection is

a special case, we can calculatem LSH hashes of the data vector,

with dimensions d , in time O(d logd +m), a significant improve-

ment over O(dm). This speedup is possible due to the theory of

Fast-Johnson-Lindenstrauss transformation [3, 15]. On the orthog-

onal side, even better speedup of O(d +m) has been obtained with

permutation-based LSH, such as minwise hashing, using ideas of

densification [37–40]. These drastic reductions in hashing time have

been instrumental in making LSH based algorithms more appealing

and practical.

3 OUR PROPOSAL

Denote the dataset with D = {xi |i ∈ [1,n]}, where n is the num-

ber of data points in D. By definition, outliers are significantly

separated from an average data point. Therefore, any reasonable

statistics of xi with respect to all other x j ∈ D will deviate sig-

nificantly for outliers compared to a normal data point. Even an

average distance of xi with all other elements of D is a reasonably

good statistics [33]. However, as noted before, computing these

statistics requires storing the complete data D. In general, calcu-

lating every single S(xi ,D) requires one complete pass over the

dataset D. Besides, our experiments show that alternative estima-

tions based on random sampling and random projections still lead

to significant computational overheads.

Inner Point

Border Point

Outlier

0 5 10 15
Number of Projections K

Inner Point
Outlier
Border Point

Inner

Border
Outlier

Figure 1: Discriminative power of S(q,D): We can see from

the figure that the value of S(q,D) for an Outlier is signifi-

cantly lower (different) compared to that of non-outliers.

We instead focus on classes of scoring functions S(., .) over the
dataset that can be estimated efficiently using a tiny (memory ef-

ficient) data structure that can easily fit fast processor cache. Fur-

thermore, we also want to update the data structure on the fly. In

particular, any change in data from D to D′ requires no change,

and the estimates get dynamically adjusted.

We show that a class of scoring functions of the following form

have the aforementioned property:

S(q,D) =
∑
xi ∈D

p(q,xi )K , (4)

where p is the collision probability of any LSH family and K ≥ 1 is

an integer.

The analysis of this paper extends naturally to any LSH scheme.

For this work, we will focus on the popular signed random pro-

jections (SRP) as the LSH because of its simplicity. Furthermore,

advances in fast SRP have lead to some very lightweight hashing

variants. With SRP, the collision probability p(q,xi ) is given by:

p(q,xi ) = 1 − 1

π
cos−1( qT xi

‖q‖ ‖xi ‖ )

which will also be the value of p(q,xi ) for the rest of the paper.
3.1 Can it Discriminate Outliers?

To demonstrate the discriminative power of the scoring function

in Equation 4, we do a simulation experiment similar to the one

performed in [32]. We first generate a simple dataset with an outlier

point. Figure 1 (left) shows the snapshot of the data. There are two

sets of data points. The outlier and the general data points. For the

general data points, in addition, we make a distinction between the

border points and inner points as illustrated in the figure.

In Figure 1 (right), we plot the value of our proposed statistics
1
n S(q,D), given by Equation 4, for different sets of data points as

a function of K . We can see from the figure the value of 1
n S(q,D)

for an outlier point is near zero. In particular, it is significantly

lower compared to the values of the same statistics for inner points

and even border points. This behavior is expected. Note that our

statistics is a sum of collision probabilities of the LSH mapping over

all the data points xi ∈ D. From the theory of LSH, the collision

probability p(q,xi ) indicates the level of similarity between q and

xi . If q is an outlier, p(q,xi ) is expected to be significantly low. We

will further demonstrate the usefulness of these statistics in the

experiments section.
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Algorithm 1 Arrays of (locality-sensitive) Count Estima-

tor(ACE) Algorithm

1: Input:DatasetD, Number of HashesK , Number of Hash tables

L, α
2: Hash Initialize: Generate L Hj (.) using K independent SRPs

each.

3: for i = 1 to L do

4: Aj = new short[2K ](0) (Short Arrays)
5: μ = 0, n = 0

6: end for

7: Online Addition Phase

8: for xi ∈ D do

9: μincre = 0

10: for j = 1 to L do

11: Aj [Hj (xi )] + +
12: μincre = μincre +

2Aj [Hj (x )]+1
L

13: end for

14: μ = 1
n+1

(
nμ + μincre

)
15: n++;

16: end for

17: Query (Detection) Phase: Given query q

18: �S(q,D) = 0

19: for j = 1 to L do

20: �S(q,D) =�S(q,D) + 1
LAj [Hj (xi )]

21: end for

22: if �S(q,D) ≤ μ − α then

23: report q
24: end if

3.2 ACE (Arrays of (locality-sensitive) Counts
Estimator) Algorithm

For the ease of explanation, we first describe the procedure of

our proposed ACE algorithm. We later show that this procedure

is an efficient statistical estimator of our proposed outlier score

S(q,D) defined by Equation 4.

The overall process of ACE is summarized in Algorithm 1. Our

ACE algorithm, uses K × L independent SRP hash functions hi ,
each given by Equation 1. K and L are hyperparameters that are

pre-specified. Note, this is analogous to the traditional (K ,L) pa-
rameterized LSH algorithm for near-neighbor search. However, we

do not perform any retrieval which requires heavy hash tables

with buckets of candidates for each hash index. For near-neighbor,

we further need to compute the distances of these candidates to

identify the best.

On the contrary, our algorithm does not require a single distance

computation. Our method only needs to check the value of a simple

counter at each index. We only need arrays of counters. The process

is significantly efficient, both in memory and speed, compared to a

single LSH near-neighbor query.

We use Signed Random Projections(SRP) hsim (Equations 1)

which gives one-bit output. Using these 1-bit outputs, we then gen-

erate L different meta-hash functions given by

…
1

4
76

+1

Arrays of CountsData Points

Inner Point
Border Point

Outlier

…
… …+1

+1+1+1

+1

5
3 4

0 1

0
… …

1

1
…

Figure 2: We use the LSH hash of the data points to incre-

ment corresponding counters into different (independent)

hash arrays. We do not save anything, we only increase the

value by 1 for each bucket and then forget the data.

Hj (x) = [hj1(x);hj2(x); ...;hjK (x)] of K bits each. The K bits are

generated by concatenating the individual bits. Herehi j , i ∈ {1, 2, ...,K}
and j ∈ {1, 2, ...,K}, are K × L independent evaluations of the SRP.

The overall algorithm works in the following two phases:

1)CountingPhase:We constructL short arrays,Aj , j = {1, 2, .., L},
of size 2K each initialized with zeros. Given any observed element

x ∈ D, we increment the count of the corresponding counterHj (x)
in array Aj , for all js. Thus, every counter keeps the total count

of the number of hits to that particular index (See Figure 2). The

total cost of updating the data structure for any given x is KL SRP

computations followed by L increments.

Mean Update on Fly: For each xi ∈ D our estimated score is

�S(xi ,D) = 1

L

L∑
j=1

Aj [Hj (xi )].

We compute the mean behavior μ of the scores over all the element

in dataset x ∈ D.

μ =
1

n

n∑
i=1

�S(xi ,D).

Deviation from this mean will indicate outlierness. It turns out

that we can dynamically update the mean μ on fly, as we read (or

observe) the new data as shown in the algorithm. See Section 3.4.1

for details.

2) Real-time (query) Phase: Given a query q, for which we want

to compute the score, we report the average of all the counters

Aj [Hj (q)] ∀j ∈ {1, 2, ...,L}, i.e., �S(q,D) = 1
L

∑L
j=1Aj [Hj (q)]. We

report q as an anomaly if the estimated score �S(q,D) is less than
μ − α , where α is some preselected hyperparameter. The overall

cost for querying is KL SRP computations and L lookups followed

by a simple average calculation.

3.3 Theory: Analysis and Superiority over
Random Sampling

We first define few notations needed for analysis. Given a query

point q. For convenience, we will denote p(q,xi ), the collision prob-

ability of the SRP of q with that of xi ∈ D, by pi . Due to space

limitations the proofs are omitted.
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Intuition: LSH as Samplers LSH is widely accepted as a black

box algorithm for near neighbor search.We take an alternative adap-

tive sampling view of LSH which has emerged very recently [10, 12,

13, 41, 42]. As argued in Section 2, for a given query q andK-bit SRP
hash function Hj , the probability that any element xi increments

the count of locationHj (q) (the location of query) in arrayAj is pre-

cisely p(q,xi )K . Using this observation, we will show that the count

of the number of elements, from D, hitting the bucket of query

Hj (q) is an unbiased estimator of the S(q,C) = ∑n
i=1 p(q,xi )K . This

novel use of LSH as efficient data structure for statistical estimation

could be of independent interest in itself.

We define indicator variable Ixi ∈Bq as

Ixi ∈Bq =
{
1, if xi is in the bucket of q

0, otherwise.
(5)

Here, Ixi ∈Bq is an indicator for the event that data element xi and
the query q are in the same bucket. It should be noted that

Pr (Ixi ∈Bq = 1) = p(q,xi )K = pKi (6)

Note that, Ixi ∈Bq and Ix j ∈Bq are correlated. If xi and x j are “sim-

ilar" then Ixi ∈Bq = 1 is likely to imply Ix j ∈Bq = 1. In other words,

high similarity indicates positive correlation. Due to correlations,

we may have both the cases:

E[Ixi ∈Bq Ix j ∈Bq ]
{
≥ pKi p

K
j , (positive correlations)

≤ pKi p
K
j , (negative correlation).

(7)

Here, E is the expectation.

Using the above notations we can show that, for a given query

q, �S(q,D), computed in Algorithm 1, is an unbiased estimator of

S(q,D) with variance given by:

Theorem 3.1.

E[
S(q,D] =
∑
xi ∈D

pKi = S(q,D)

Var (�S(q,D)) = 1

L

( n∑
i=1

pKi (1 − pKi )

+
∑
i�j

[
E[Ixi ∈Bq Ix j ∈Bq ] − pKi p

K
j

] )
The variance of �S(q,D) is dependent on the data distribution.

There are two terms in the variance 1
L

( ∑n
i=1 p

K
i (1 − pKi )

)
and

1
L

∑
i�j

[
E[Ixi ∈Bq Ix j ∈Bq ] −pKi p

K
j

]
. The terms inside summation is

precisely the covariance between Ixi ∈Bq and Ix j ∈Bq
E[Ixi ∈Bq Ix j ∈Bq ] − pKi p

K
j = E[Ixi ∈Bq Ix j ∈Bq ] (8)

− E[Ixi ∈Bq ]E[Ix j ∈Bq ] (9)

= Cov(Ixi ∈Bq , Ix j ∈Bq ) (10)

There aren(n−1) covariance terms in the second term of variance,
1
L

∑
i�j

[
E[Ixi ∈Bq Ix j ∈Bq ] − pKi p

K
j

]
. To see why almost all of them

will be negative, letm be the number of elements in the buckets

of the query. So only pairs xi and x j in the bucket (O(m2) pairs) of
queryHj (q)will contribute 1−pKi pKj ≥ 0 to the summation (product

of indicators is 1 ⇐⇒ both are 1). Rest all pairs (O((n −m)2))

will contribute negative terms −pKi pKj . Thus, if we choose K large

enough then the expected number of elements in the bucketm is

quite small. Hence, we can expect the variance to be significantly

smaller than

( ∑n
i=1 p

K
i

(1−pKi )
L

)
. We observe in our experiments

that K = 15 is a good recommended constant value.

As noted the variance is dependent on the data distribution. If

we have all exact duplicates, then all the covariances are positive.

However, for real datasets, for any randomly chosen pair xi , x j , the
covariance Cov(Ixi ∈Bq , Ix j ∈Bq ) will be almost always be negative.

An alternative way of estimating S(q,D) is to use the random

sampling. The idea is to uniformly sample a subset S ⊆ D of size

L and report the random sampling estimator RSE(q,D) as:
RSE(q,D) = n

L
[
∑
xi ∈S

pKi ] (11)

From the theory of random sampling this estimator is also unbiased

and has the following variance:

Theorem 3.2.

E[RSE(q,D)] =
∑
xi ∈D

pKi = S(q,D)

Var (RSE(q,D)) =
n∑
i=1

pKi

( [
n

L
− 1

]
pKi

)
Both RSE(q,D) and �S(q,D) are unbiased. For the same number

of samples, the estimator with smaller variance is superior.

We can get some insights from the leading terms
∑n
i=1 p

K
i

( [
n
L −

1

]
pKi

)
and 1

L

( ∑n
i=1 p

K
i (1 − pKi )

)
. Generally, for any i and large

enough n, we always have

[
n
L − 1

]
≥ 1

L (
1−pKi
pKi

). Thus, for large
enough n,

Var (RSE(q,D)) > 1

L

( n∑
i=1

pKi (1 − pKi )
)

As argued before for real data we can expect 1
L

( ∑n
i=1 p

K
i (1−pKi )

)
>

Var (�S(q,D)). Precise mathematical comparison between the vari-

ances of these two estimators is fairly challenging due to data-

dependent correlation.

Empirical Comparison: As argued, we expect that for real

datasets the ACE estimator to be more accurate (less variance) com-

pared to the random sampling estimator. To validate our arguments

empirically, we compare these estimators on the three benchmark

anomaly detection datasets. These are the same datasets used in the

experiment sections (see section 5.1 for details). For all the three

datasets, we randomly chose 50 queries and estimate their S(q,D)
using the two competing estimators. We use K = 15 which is the

fixed value used in all our experiments.

We plot the mean square error of the estimates, computed using

the actual and the estimated values on three real anomaly detection

datasets, in Figure 3. We vary the number of samples for random

sampling estimator RSE(q,D) and the number of arrays for �S(q,D).
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Figure 3: Comparison of ACE estimator with random sampling estimator on three datasets. The x-axis denotes the number to

arrays and size of samples for ACE estimator and random sampling estimator respectively. ACE estimator is not only more

accurate but also cheaper compared to random sampling estimators from the computational perspective.

From the plots, it is clear that on all the three real datasets, as ex-

pected from our analysis, our ACE estimator �S(q,D) consistently
outperforms the random sampling estimator RSE(q,D) at the same

level of L. Note, these estimators are unbiased and hence mean

square error value is also the theoretical variance. These experi-

ments indicate that the variance of our ACE estimator is superior

for estimating S(q,D) over random sampling.

In addition to providing sharper estimates, in the next section,

we show that our ACE algorithm only needs O(d logd + KL) com-

putations to calculate the score. Here, d is the dimensions of the

dataset. For the same number of samples L, random sampling esti-

mator requires O(Ld) computations. Given that K = 15 is a fixed

constant. For high dimensional datasets, we will have d > K . Thus,
our estimator is not only more accurate but also cheaper compared

to random sampling estimators from the computational perspective.

3.4 Implementation Details, Running Time,
Cache Utilization and Memory

Running Time: From Algorithm 1, it is not difficult to see that for

a query q, we need to compute KL hashes of the data followed by

a simple addition of size L. The costliest step is the computations

of KL hashes, which for d dimensional data can be accomplished

in O(d logd + KL) computations using advances in fast random

projections (Section 2). If instead, we are using minwise hashing as

the LSH then it can be done in mere O(d + KL) using fast minwise

hashes. However, minwise hashing is limited to binary datasets

only.

Note that computing the original score S(q,D) via naive calcu-
lation requires O(nd) computations. It further require to store all

the data for outlier detection, which for large and high dimensional

datasets can be prohibitive.

In all our experiments, we useK = 15 and L = 50 for all the three

datasets (see Section 6). Thus, with these small constant values, our

scoring time negligible compared to the other algorithms which

requires one pass over the full datasetD. In the experiments, we see

that even with such minuscule computation, our method provides

competitive accuracy while being orders of magnitude faster than

11 state-of-the-art methods.

Memory: Since we have 2K counters, it is unlikely that the

counters will get too many hits. To save memory by a factor of

two, we can use short integers (16 bits) instead of integer counters.

The total amount of memory required by L counter arrays is 2K

bytes each if we use short counters. The total space needed for

the arrays is L × 2K × 2 bytes. For K = 15 and L = 50, the total

space required by the ACE algorithm is around 3.2MB. In addition,

we need to compute KL = 750 hashes, which requires storing 750

random seeds (integers) from which we can generate hashes on the

fly. 750 integers require negligible space compared to 3.2MB. In the

worst case, even if we decide to store the full random projections,

we only need 750 × d × 8 bytes (approx 6d kilobytes).

L3 Cache Utilizations: For all of our experiments, the total

memory requirement of the ACE algorithm is ≤ 4MB for all the

datasets. Our query data structure, the arrays, can easily fit into L3

cache of any modern processor, where the memory access can be

anywhere from 2-10x faster than the main memory (DRAM) access.

Detecting anomaly requires scoringwhich only needs reading count

from the arrays. Due to all these unique favorable properties, our

algorithm is orders of magnitude faster than the fastest available

packages for unsupervised anomaly detection.

3.4.1 Dynamic Updates. One of the appealing features of the

ACE algorithm is that data can be dynamically updated. It is straight-

forward to increment the counters if we decide to add any data

x . However, we will lose all the data information. We only store

a set of count arrays, so it is not clear how we update the global

mean μ of counts. Updating μ is an important part of Algorithm 1.

Note that the updated mean, μ ′, should be the average of all the

estimated score of all the data in D′ = D + x .
It turns out that we can exactly compute the new value of μ ′

from the existing count arrays. To simplify, let us convert old mean

μ to sum by multiplying it by the size of dataset n = |D|. It is easy
to keep track of the sum

nμ =
∑
xi ∈D

1

L

L∑
j=1

Aj [Hj (xi )].

Observe that, if the new x goes to location Hj (x) in array Aj for

any j. The count of location Hj will be increment by 1. This will

also lead to an increment in the scores of all the elements which

maps toHj (x) in jth array by exactly 1
L . Since we already know the

count value of Aj [Hj (xi )], the total increment to the sum would be
Aj [Hj (xi )]

L . In addition, the new data x will add an extra
Aj [Hj (xi )]+1

L
for its own count. Thus, we can precisely compute the increment

in the sum. The new mean μ ′, for an addition of data x , can be
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computed as

μ ′ = 1

n + 1

(
nμ +

L∑
j=1

2Aj [Hj (x)] + 1
L

)
. (12)

4 DISCUSSIONS: PRIVACY PRESERVING
ANOMALY DETECTION

Privacy is becoming one of the sought after directions in data min-

ing and machine learning. Privacy preserving anomaly detection

is of broad interest in the big-data and IoT (Internet of Things)

community [45]. In many setting, we do want to detect anomalies

in the data. However, it also desirable that the attribute informa-

tion remains private and secure. It turns out that our proposed

ACE algorithm has ideal properties for privacy preserving anomaly

detection.

ACE does not require storing any data attributes, and the com-

plete algorithm works only over aggregated counts generated from

hashed data. If the hashes are not invertible, then the algorithm is

safe. We can exploit advances in the secure computation to design

protocols which hide the hashing mechanism [19].

Obtaining differential privacy [5, 31] with ACE is quite appeal-

ing and neat. Since ACE algorithm relies on random projections to

compute hashes, instead of original data, we can make ACE algo-

rithm differentially private by adding only Gaussian noise instead

of heavy-tailed Laplacian noise. [24] shows a way to release user

information in a privacy-preserving way for near-neighbor search.

The paper showed that adding Gaussian noise N (0,σ 2) after the
random projection preserves differential privacy. Any function of

differentially private object it also differentially private. Thus, to

compute a private variant of SRP (Signed random projection), we

used the sign of the differentially private random projections (gen-

erated by adding Gaussian noise to usual projection) as suggested

in [24].

The final algorithm is very simple. The data is never revealed

to anyone. At the source itself, the sign of differentially private

random projections of data is used instead of usual SRP. All other

process remains the same. Now since, we are only perturbing our

algorithm with Gaussian noise, instead of Laplacian, we can expect

a minimal loss in utility (or change in output).

Note, that privacy is significantly harder with other state-of-the-

art anomaly detection algorithms that store the actual data or even

samples. Making such algorithms private requires perturbing the

system with heavy-tailed Laplacian noise, which can significantly

hurt the outcome of the algorithm.

5 EXPERIMENTAL EVALUATIONS

5.1 Datasets

We choose three real-world benchmark datasets for anomaly detec-

tion: 1) Statlog Shuttle, 2) Object Images (ALOI), and 3) KDD-

Cup99 HTTP. These datasets are labeled and hence can be used

for quantifying the effectiveness of anomaly detection measure.

These three datasets also cover a broad spectrum of applications of

unsupervised anomaly detection.

The first dataset we use is the shuttle dataset 1. This dataset de-

scribes radiator positions in a NASA space shuttle with 9 attributes.

It was designed for supervised anomaly detection. In the original

1https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)

Table 1: The statistics of the three datasets.

Dataset Instances Outliers Dimension

Statlog Shuttle 34, 987 879 9

Object Images (ALOI) 50, 000 1508 27

KDD-Cup99 596, 853 1055 36

Table 2: Comparison Algorithms and Their Parameter Val-

ues Recommended for These Benchmark Datasets.

Method Shuttle Image Object KDD-CUP 99

ACE K = 15, L = 50 K = 15, L = 50 K = 15, L = 50

LOF k = 5 k = 5 k = 10

kNN k = 5 k = 5 k = 10

kNNW k = 5 k = 5 k = 10

LoOP kr = kc = 5 kr = kc = 5 kr = kc = 10

λ = 0.2 λ = 0.2 λ = 0.2

LDOF k = 5 k = 5 k = 10

ODIN k = 5 k = 5 k = 10

KDEOS k = 5 k = 5 k = 10

B = 5, s = 0.2 B = 5, s = 0.2 B = 5, s = 0.2

Gaussian Kernel Gaussian Kernel Gaussian Kernel

COF k = 5 k = 5 k = 10

LDF h = 1, c = 0.1 h = 1, c = 0.1 h = 1, c = 0.1

Gaussian Kernel Gaussian Kernel Gaussian Kernel

INFLO k = 5,m = 0.5 k = 5,m = 0.5 k = 10,m = 0.5

FastVOA k = 5, |S2 | = 2,

|S1 | = 320

k = 5, |S2 | = 2,

|S1 | = 320

k = 10, |S2 | = 2,

|S1 | = 320

datasets, about 20% of the data regarded as anomaly. The entire

dataset contains 34, 987 instances with 879 anomalies.

The second dataset is Object Images (ALOI) datasets2. The aloi

dataset is derived from the “Amsterdam Library of Object Images"

collection [16]. It contains about 110 images of 1000 small objects

taken under different light conditions and viewing angles. From

the original images, a 27 dimensional feature vector was extracted

using HSB color histograms [35]. Some objects were chosen as

anomalies, and the data was down-sampled such that the resulting

dataset contains 50, 000 instances including 1508 anomalies.

The third dataset is KDD-Cup99 HTTP. 3. KDD-Cup99 HTTP

dataset [28] is the largest benchmark for unsupervised anomaly

detection evaluation. It contains simulated normal and attack traffic

on an IP level in a computer network environment in order to test

intrusion detection systems. There are total of 36 dimensions. The

dataset contains 596, 853 instances with 1055 labeled anomalies.

The statistics of these datasets are shown in Table. 1.

5.2 Baselines

We use 11 different state-of-the-art methodologies to compare with

ACE. These methodologies cover the whole spectrum of unsuper-

vised anomaly detection techniques with all sorts of variations

developed over the years. Our baselines cover very recent scor-

ing mechanisms based on simple to sophisticated strategies which

include near-neighbor, kernel density estimation, graph connect-

edness, etc. The competing methodologies are: ACE (Proposed),

2http://aloi.science.uva.nl/
3http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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Table 3: Comparison Results

Dateset Method Reported Correct Missed F1-score F1-Rank Time (s) Speed-up with ACE

Statlog Shuttle

ACE 6763 273 606 0.071 5 0.81s 1x

LOF 4356 381 498 0.145 3 14.12s 17.4x

kNN 4897 493 386 0.170 2 12.35s 15.2x

kNNW 5264 610 269 0.199 1 13.54s 16.7x

LoOP 6145 201 678 0.057 8 14.51s 17.9x

LDOF 6433 330 549 0.090 4 16.42s 20.3x

ODIN 9775 375 504 0.071 6 12.21s 15.1x

KDEOS 12630 314 565 0.046 12 11.73s 14.5x

COF 9133 280 599 0.056 11 13.45s 16.6x

LDF 9809 375 504 0.070 7 19.93s 24.6x

INFLO 4488 183 696 0.068 8 14.03 17.3x

FastVOA 8532 271 608 0.057 10 235.10s 290.2x

Image Object

ACE 7216 340 1168 0.078 5 1.26s 1x

LOF 4476 519 989 0.1735 1 72.31s 57.4x

kNN 5428 447 1061 0.1289 2 63.27s 50.2x

kNNW 5558 329 1508 0.089 4 89.96s 71.4x

LoOP 5121 253 1179 0.077 6 59.97s 47.6x

LDOF 7501 470 1038 0.1043 3 60.39s 47.9x

ODIN 10110 162 1346 0.028 12 72.69s 57.6x

KDEOS 9515 404 1104 0.073 7 55.89s 44.36x

COF 8746 284 1224 0.055 11 81.74s 64.9x

LDF 9133 301 1207 0.056 10 60.51s 48.0x

INFLO 10328 420 1088 0.071 8 72.13s 57.2x

FastVOA 8931 319 1189 0.061 9 291.10s 231.0x

KDD-CUP 99

ACE 15160 406 649 0.051 5 23.33s 1x

LOF 13260 523 532 0.073 1 1813.63s 77.7x

kNN 15432 365 690 0.044 7 1483.54s 63.5x

kNNW 14328 460 595 0.059 2 2125.43s 91.1x

LoOP 16578 396 659 0.045 6 1594.54s 68.3x

LDOF 16579 496 559 0.056 3 1674.43s 71.7x

ODIN 18054 365 690 0.038 10 1918.34s 82.2x

KDEOS 21095 469 586 0.042 8 1428.32s 61.2x

COF 20658 584 471 0.054 4 2043.43s 87.5x

LDF 19574 368 687 0.036 11 1485.85s 63.7x

INFLO 25704 565 490 0.042 9 1684.47s 72.2x

FastVOA 29316 354 701 0.023 12 3510.26s 150.4x

LOF (Local Outlier Factor) [6], FastVOA (Fast Variance of An-

gles) [32], kNN (KNNOutlier) [33], KNNW (KNNWeightOutlier)

[4], LoOP (Local Outlier probability) [26], LDOF (Local Distance

based Outlier Factor) [47], ODIN (Outlier Detection using Indegree

Number) [21], LDF (Local density factor) [27], KDEOS (Kernel

Density Estimation Outlier Score) [36], COF (Connectivity-based

Outlier Factor) [43] and INFLO (Influenced Outlierness) [23].

We use the highly optimized recent ELKI (Environment for De-

veloping KDD-Applications Supported by Index-Structures) pack-

age [34] which is the most advanced set of anomaly detection

algorithms noted for its efficient implementations. 10 of our base-

lines methodologies are implemented in this package. For FastVOA,

a state-of-the-art randomized algorithm for variance of angle com-

putation, we use the C++ package provided by the authors.

It should be noted that ACE and FastVOA are implemented in

C++, while ELKI is a java package. A direct wall clock comparison

is not fair. However, given the simplicity of our algorithm (Algo-

rithm 1) which only requires simple hashing, use of primitive arrays,

and simple summations. We do need any complex object other than

arrays of short integers (primitives only). All other operations are

primitive multiplications and summations. Thus, we expect that the

difference between Java and C++ implementation would not be any

significant for ACE. Furthermore, we show a significant speedup

which cannot be explained by the difference in platforms.

Parameter Settings:Almost all of our baseline algorithms need

hyper-parameters. We use most of the default settings of the pa-

rameters as implemented. For the baseline algorithms, the ELKI

package has the recommended settings of parameters for these

benchmark datasets. To avoid complications, we directly use those

recommended settings. For the sake of reproducibility, we provide

the precise recommended settings of the parameters for different

methods and datasets used in the paper in Table 2. It should be

noted that for ACE we use the fixed value of K = 15 and L = 50 for

all the datasets. ACE does not need the near neighbor parameter k
(small). Variations in parameter K and L are discussed in Section 6.
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System and Platform Details: Experiments were conducted

on a 3.50 GHz core XeonWindows platform with 16GB of RAM.We

use g++ (version 5.4.0) as the C++ compiler for ACE and fastVOA.

For ELKI package, we use OpenJDK 64bits version 1.8.0.

5.3 Methodology and Results

All of these 12 algorithms associate a score with every element

in the data. After association, a significantly lower score from the

mean indicates an anomaly. In order to convert these scores into an

anomaly detections algorithm, there are many reasonable strategies.

We can rank each candidate, based on scores, and report bottom-

k as the anomalies, but such rankings are not realistic. In real-

time applications, ranking all the seen records is artificial. A more

practical approach is to use a threshold strategy to report anomalies.

We compute the mean μ and the standard deviations σ of the scores

on the dataset of interest and report any element with the associated

score less than μ − σ as an anomaly.

With the above introduced anomaly detection strategies, we run

all the 12 algorithms on the three datasets. We report seven different

numbers separately for each of the three datasets: (1) Number of

outliers reported; (2) Number of outliers correctly reported; (3)

Number of Outliers missed; (4) F1-score; (5) Ranking of F1-score; (6)

the CPU execution time for the different methods, and (7) Relative

speed with ACE. The CPU executing time is the end to end time

of the complete run of the algorithm, which includes data reading,

preprocessing (if any), scoring every data instance, and reporting

outliers. Relative speedup reports the ratio of the time required by a

given algorithm to the time required by ACE algorithm. The results

of each datasets are shown in Table 3.

Accuracy Comparison. We report the F1-scores[2] of each

method. F1-score is a widely used method for evaluating the per-

formance of anomaly detection methods, for the detailed definition

of F1-score please refer [2]. Based on the F1-scores of each method,

we rank the different methods. From the results, we can see LOF

seems to be consistently more accurate than others. ACE is ranked

consistently among the top-5 ranked methods on all the datasets.

The number of anomalies reported correctly (true positives) with

ACE is similar to other algorithms. ACE, however, seems to report

slightly more anomalies (high false positives) than other algorithms.

This is not a major concern though. Few extra false positives are

easy to deal with because we can always further filter them using

a more sophisticated algorithm, so long as they are small. Overall,

our proposed new scoring scheme S(q,D) and the corresponding

estimator performs very competitively, in terms of accuracy, in

comparison with many successful algorithms.

Running Time Comparison. The most exciting part is the

computational savings with ACE. From the result, we observe that

ACE is significantly faster than any other alternatives irrespective

of the choice of dataset. ACE algorithm is at least around 15x, 45x

and 60x faster than the best competitor on Statlog Shuttle, Object

Images (ALOI), and KDD-Cup99 HTTP datasets respectively. Most

of the algorithms, based on near-neighbors except FastVOA, have

similar speeds. This could be because almost all of them requires

computation of the order of the data. FastVOA is consistently very

slow, which we suspect is because the estimators used in FastVOA

is computationally very expensive. FastVOA estimators require

multiple sorting and frequently computing costly medians. See [32]

for details. ACE is around 150-300x faster than FastVOA.

Memory Analysis. The results are even more exciting if we

start considering the memory requirements. With K = 15 and

L = 50, our methodology requires less than 4MB of operating

memory for the complete run of the algorithm. Since we use the

same K and L across all datasets, this 4MB requirement is unaltered.

We never keep any data in the memory. On the other hand, all

other methods except FastVOA require storing complete data in the

memory. In our case, the KDD-Cup99 HTTP dataset itself is around

165MB to store. Although KDD-Cup99 HTTP dataset is the largest

labeled benchmark, it is still tiny from big-data perspective. The

disruptive performance of ACE is not surprising given the simplicity

of the process. However, as argued, the process is a statistically

sound procedure for estimating the proposed score S(q,D).
6 DISCUSSION: EFFECTS OF K AND L

Parameters K and L determine the memory and also the running

time of the ACE algorithm. Note L is also the number of indepen-

dent samples used for averages. Therefore, a reasonably large L is

good enough, after which increasing L does not give significant

accuracy but hurts the performance. K cannot be too small because

locations in arrays should distinguish anomalies with everything

else. However, too large K is not needed either. Ideally, if K is logn,
then under random assignments all data will go to the single bucket.

Beyond this K , the performance is lost for no gain in accuracy.

To stress test, we ran ACE for with different values of K =
{2, 5, ..., 20} and L = {10, 20, ..., 100}. For the Image dataset,

the minimum reasonable result appears at K=8, L=30. For the shut-

tle dataset, K=11, L=10 is fine, and for the KDDCUP dataset, the

minimum fair result appears at K=9, L=30. These parameters give

similar results as shown with fixed K = 15 and L = 50. With these

parameters, the ACE took mere 0.5, 0.2 and 11.5 seconds on the

Image, shuttle and KDDCUP dataset for a negligible loss in accuracy

compared to what is shown in Table 3. The results degrade if we

decrease K and L beyond these numbers. Increasing K and L values,

significantly beyond K = 15 and L = 50, does not increase the

accuracies significantly but, as expected, hurts the performance.

7 CONCLUSION

Statistical measures for popular learning and data mining prob-

lems, such as anomaly detection, were designed without taking

into account the computational complexity of the estimation pro-

cess. When faced with current big-data challenges, most of these

estimation process fail to address tight resources constraints. In this

paper, we showed that for the problem of unsupervised anomaly

detection, we could leverage advances in probabilistic indexing and

redesign a significantly efficient statistical measure.

We proposed ACE algorithm, for unsupervised anomaly detec-

tion, which is 60-300x faster than existing approaches with compet-

ing accuracy. Our algorithm requires mere 4MB of memory which

can utilize L3 caches of modern processors leading to fast-lookups.

We believe ACE will replace existing unsupervised anomaly detec-

tion algorithms deployed in resource-frugal environments.
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